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 ABSTRACT 

 

Incorporation of Machine Learning (ML) techniques in determining dynamic 

properties for the structural systems that manifest non-linearity in behavior 

with respect to the geometry attributes under seismic response was the 

main scope of the current work. The fundamental period of the vibration 

(T-period) for the moment-resisting frame of reinforced concrete 

structures was selected as a studied parameter for validating applicability 

of utilizing ML approach in prediction of uncertainties earthquake 

engineering.  Artificial neural network (ANN) and Vector Machine (SVM) 

with devised embedded Kernel functions was based ML implementation for 

prediction of T-period. Radial basis function (RBF), Exponential RBF and 

Sigmoid were set up as kernel functions for supervising and enhancing 

accuracy of learning SVM model to the primitive dataset.   The findings 

attempted to generate intuitive with high accuracy relationships for the 

models with less discrepancies compared to the conventional that based 

linear regression.  

http://www.emiratesscholar.com/
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1. Introduction 

Assessment of seismic response of structures had been 

extensively alleviated using different approaches, e.g. 

(dynamic simulations [1], finite element analysis [2,3], 

time-history analysis [4], and other methods related to 

seismic demand- structure capacity analysis [5] or to 

intensity measures [6]. However, the initial cost and 

time-consuming of performing these simulations for 

predicting seismic structural response was the key to 

draw highlights on utilization Machine learning (ML) 

as advanced computational tool approach that relied 

on learning relationships on its embedded data [7] and 

incorporated it into the realm of earthquake 

engineering and seismology [8,9]. In addition, the 

need for evaluation of the non-linearity behavior of 

structures that were subjected to large deformation 

was a crucial issue. Therefore, a demand for finding a 

trustworthy prediction model that can overcome the 

challenges encountered by linear/traditional 

computational methods for assessment of performance 

of reinforced concrete structures has been 

recommended over a decade [10] 

Machine Learning has been used in different 

applications of earthquake engineering for reinforced 

concrete-based moment resisting frame structures 

[11], Seismic response of structures [12], damage 

assessment [13], failure probabilities and structural 

vulnerability [14] for its reliability in adapting the 

uncertainty and complexity of high-dimensional 

structural performance due to ground motion-imposed 

loading and thus lowering the risk for collapse 

mechanism [3]  

Determination of the fundamental period of vibration 

for the structure as dynamic property efficiently and 

accurately can lead to the optimal design of the 

structure in terms of safety and serviceability [15]. 

Despite approximate expressions that have been 

provided by building codes to assess the period of 

vibration (T) for the structure, accurate computation 

for the period-T taking account the effect of other 

factors into consideration such as, soil-structure 

interaction, stiffness-mass relationships and structural 

design.etc.is needed especially at the preliminary stage 

of structural design. It can be noted that machine 

learning can help build codes to propose and 

modernize appropriate empirical expressions for 

various structural design properties.[16]  

 

Two of machine learning models will be performed in 

this work to constitute a learning relationship between 

a trained set of data and yielding a desirable output of 

the fundamental period-T, Artificial Neural Network 

(ANN) and Support Vector Machine (SVM). The 

superiority of these two models has been proved in 

recent research to cope successfully with unknown or 

complex seismic or other variables relevant to 

reinforced concrete structures over conventional 

computational methods [17-21] . The SVM method 

relies on mapping input data into high-dimensional 

feature spaces using interconnecting functions so-

called “Kernel functions” (K-functions) [22]. Multiple 

K-functions have been used to investigate their 

potential in improving precision of flooding detection 

probability [23], seismic wave detection [24] and 

structural health monitoring [25] but lack of research 

conduct in seismic response prompts this work to 

address their improvement of the accuracy.  

Mathematical and statistical measures metrics such as 

determination of coefficient R2, indices based- error 

measurement such as Mean absolute, Relative 

absolute and Root Relative Square will be used as 

performance assessment indicator for validation of the 

machine learning models for prediction of the 

fundamental T-period threshold value. A comparison 

with the conventional linear regression approach will 

be conducted to highlight the limitation of the 

conventional methods and expected capabilities of 

ML-models to withstand the non-linearity as in-elastic 

response of RC structures that undergo unpredicted 

external seismic loading.  

2. Methodology 

2.1 Initial Data set features 

The reported data for the fundamental period of 

vibration (T-period) for reinforced concrete structure 

composed from Moment-Resisting Frame (MRF) will 

be extracted from recent literature review in the 

custom range between 2018-2024. The input data that 

will be used for neural networks and SVM will be 

correlated to certain factors that T-period corresponds 

to as presented in Table1. Seven parameters will be 

trained and set for ANN and SVM with a trialed 

number of hidden layers to constitute typical 

architecture for ML models.  
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Table 1. Initial selection of performed input data for 

machine learning models 

Input feature Input description 

H Height of the building 

W Width of the building 

k Stiffness of the moment resisting 

frame for RC structure 

m Specific mass of the structure 

S Soil type that structure resting on 

it 

n Number of stories of the building 

L Number of bays that span 

between RC frames 

 

2.2 Machine Learning Algorithms 

2.2.1 Artificial Neural Networks (ANN) 

The proposed ANN model for carrying out the 

prediction for T-period value will consist of seven 

input nodes with one hidden layer of 32 neurons and 

one yielded output value. Multi-layer Back 

Propagation was chosen as proper algorithm for ANN 

implementation to model reinforced concrete structure 

characteristic [26,27], where the output values are in 

process of “back and forth” through the hidden layer 

until the final optimized with least error could be 

yielded to predict the desired value “V” as schemed in 

figure 2. The initial input data will be trained using 

Levenberg–Marquardt (LM) for enhancing the 

accuracy and precision [22]. the weighted components 

(ωx) and bias terms (b) for the selected number of 

input data (n) in embedded number of hidden layers (j) 

for the developed ANN model expression will be as 

the follows:              

𝑦𝑗 = 𝑓(𝑛𝑒𝑡) = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗)
𝑛
𝑖=1                       (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematics for architecture of BPA based 

neuron network carried out in this work. [28] 

2.2.2 Support Vector Machine (SVM)  

In this work, SVM-based mathematical algorithm was 

executed to predict end-product value for T-period, it 

aims to convert nonlinearity of the input data by 

adding high-dimensional feature space function (Ф) 

and turning into linear function for the sake of ease of 

processing with minimal structural risk i.e optimal 

connection between output values and trained input 

data.[29] .   the mathematical algorithm for SVM as 

follows: 

𝑓(𝑥) = 𝜔. 𝜑(𝑥) + 𝑏                               (2) 

Adding external functions (kernel function) to 

nonlinear SVM algorithm will extend the polynomial 

and simplify the high dimensionality for the function 

(Ф) during execution process [29]. Selection of a 

suitable kernel function is a key for reaching optimal 

homogeneity and linearization for the space vector 

[30]. Radial basis function (RBF), Exponential RBF 

and Sigmoid were set up as kernel functions for 

supervised learning SVM models due to their 

attributes in increasing the accuracy of SVM 

predictions.[31]. The algorithm expressions with their 

denoted variables for kernel functions (Table 2) are 

listed in literature review [31,32]. 

Table 2. Mathematical functions were set up as kernel 

function for SVM performance enhancement  

Kernel type Expression 

Radial Basis Function 

(RBF) 
𝐾(𝑥𝑖 , 𝑥𝑗) = exp⁡(−𝛾‖𝑥𝑖 − 𝑥𝑗‖

2
 

Exponential RBF 
𝐾(𝑥𝑖 , 𝑥𝑗) = exp⁡(

−‖𝑥𝑖 − 𝑥𝑗‖

2𝜎2
 

Sigmoid 𝐾(𝑥𝑖 , 𝑥𝑗) = tanh⁡(𝑘𝑥𝑖
𝑇𝑥𝑗 − 𝛿) 
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A rational kernel function will be carried out in SVM 

model to evaluate the susceptibility of the input 

variables in such dynamic system that undergoes large 

deformation like RC buildings in the event of seismic 

response. This k-function is based on measuring 

Euclidean distance between the either independent or 

dependent variables as quadratic difference for 

suppressing overfitting of the complexity of input 

data, [33]. The generic algorithm form for quadratic 

rational K-function is [34]  

𝑘𝑅𝑄(𝑥, 𝑥́) = 1 −
‖𝑥−𝑥́‖2

‖𝑥−𝑥́‖2+𝐶
                              (3) 

2.3 Performance indicators for ML-models  

Validation of ANN and SVM models for prediction of 

T-period will be evaluated using performance 

measures for the output values versus target ones. 

Statistical metrics were performed in this study such 

as determination of coefficient R2, Mean Absolute 

Error (MAE), Mean Square Error (MSE) and Root 

Mean Square Error (RMSE).  

2.4 Comparison with Multi Linear Regression   

To evaluate the efficiency of predictive machine 

learning models for T-period, Multi-Linear Regression 

(MLR) technique will be computed among the non-

normalized input variables (X1, X2,…., X7) 

distinguished by regression coefficient (α, β) resulting 

in an output parameter (Y) with least error value (ϵ) as 

generalized expression stated below:  

𝑌(𝑀𝐿𝑅) = 𝛼0 + 𝛼1𝑋1 + 𝛼2𝑋2 +⋯+ 𝛼𝑛𝑋𝑛 + 𝜖                  (4) 

Hence, the proposed empirical formula for estimating 

the fundamental period for multi-story reinforced 

concrete structure with height H and other dependent 

mutual variables dominated by group factor C: [36]     

𝑇 = 𝛼𝐻𝛽 ∗ 𝐶                   .                                               (5) 

 

Substituting eqn. (5) into eqn. (4) via analogue 

coefficient method to reform the intuitive relationship 

for the input variables that impacted on final 

prediction of T-period output. Eqn (6) will be most 

likely:   

3. Results and Discussion 

3.1 Data Visualization 

 

To better assess the intuitive relationship among data 

set features, pairwise relationships have been created 

for the data set that is selected for machine learning 

training as shown in figure1. The geometry of the 

reinforced concrete structures such as the height of the 

building, width and number of floors were weighted as 

large counts among the trained dataset to predict their 

impact on T-period threshold values. 

 

Figure 1. Pair plots of the most informative dataset 

features versus the target T-period value 

3.2 Selection Features in machine learning 

Selection of the most informative dataset features that 

express non-linearity in behavior under dynamic 

response and rank their influential display on final T-

period value could be obtained through “Mutual 

Information” (MI) (figure2.) correlation metric. High 

rank was given to the building height followed by the 

number of stories which gained through determination 

of the probability of mutual dependencies p(x,y) 

among large dataset with non-linearity features 

relative to the probability of each marginal of the input 

variables p(x), p(y) as expressed on eqn. (7). Thus, 

reducing the dimensionality of the matrix by removal 

of redundant and repetitive variables to highlight on 

the importance relativity for the input factors to each 

other and to the predictor value (I) in eqn. (7) for the 

input variables will be beneficial on model 

performance and accuracy of the prediction and 

comprehensibility of the results. 
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                                         𝐼(𝑋, 𝑌) =

∑ ∑ 𝑝(𝑥, 𝑦)log⁡(
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑌𝑋                                      (7) 

 

Figure 2. Mutual dependencies of the selecting of the 

data set prior to learning  

3.2 Model Performance 

The performance of Artificial Neural Networks 

(ANN) and Support Vector Machines (SVM) with 

various kernel functions was compared to that of a 

traditional multi-linear regression model in predicting 

the fundamental period (T-period) of reinforced 

concrete (RC) moment-resisting frames. Model 

accuracy was assessed using the Mean Squared Error 

(MSE), Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), and coefficient of 

determination (R²). A summary of the results is 

presented in Table 1. This comparative analysis aimed 

to evaluate the efficacy of advanced machine-learning 

techniques against conventional statistical methods in 

structural engineering. These specific models were 

selected based on their proven capabilities in handling 

complex, non-linear relationships often encountered in 

structural dynamics. Including multiple performance 

metrics ensures a comprehensive evaluation that 

addresses the magnitude and distribution of prediction 

errors.  

The table presents a detailed comparison of the 

performance metrics across different models. It 

includes columns for each model type (ANN, SVM 

with various kernels, and multi-linear regression) and 

rows for each performance metric (MSE, MAE, 

RMSE, and R²). This comprehensive presentation 

provides an understanding of each model's strengths 

and weaknesses across different evaluation criteria 

 

 

Table 1: Performance assessment for the ANN and 

SVM with their K-functions 

Model MSE MAE RMSE R² 
ANN 0.0709 0.1760 0.2663 0.9010 
SVM (RBF 

Kernel) 
0.0572 0.1384 0.2392 0.9201 

SVM 

(Exponential 

RBF Kernel) 

0.0568 0.1378 0.2383 0.9207 

SVM 

(Sigmoid 

Kernel) 

0.8519 0.4049 0.9230 -

0.1898 

SVM 

(Rational 

Quadratic 

Kernel) 

0.0767 0.1505 0.2770 0.8928 

Linear 

Regression 
0.1448 0.2562 0.3806 0.8873 

 

3.1.1 Artificial Neural Networks (ANN) 

The ANN model with a single hidden layer of 32 

neurons achieved an R² of 0.9010, indicating a strong 

correlation between the predicted and actual T-period 

values. The low MSE (0.0709) and RMSE (0.2663) 

values suggest that the model effectively captures non-

linear relationships among input features (e.g., height, 

stiffness, and mass), producing accurate predictions. 

The architecture of the ANN, particularly the choice of 

32 neurons in the hidden layer, was determined 

through extensive experimentation and cross-

validation. This configuration strikes a balance 

between the model complexity and generalization 

capability. The high R² value demonstrates the ability 

of the ANN to explain over 90% of the variance in the 

T-period data, which is particularly impressive, given 

the complex nature of structural dynamics. The low 

MSE and RMSE values further corroborate the 

model's accuracy, indicating that the average 

magnitude of the prediction errors was relatively 

small. This suggests that the ANN successfully learned 

to generalize from the training data, capturing the 

underlying patterns that govern the relationship 

between structural parameters and the fundamental 

period. 

3.1.2 Support Vector Machines (SVM) 

The Exponential RBF kernel SVM performed the best, 

achieving an R² of 0.9207, followed closely by the 

RBF kernel with an R² of 0.9201. The strong 

performance of these kernels is due to their ability to 

map non-linear data into higher-dimensional spaces, 

capturing complex interactions between structural 
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parameters. The superior performance of the 

Exponential RBF kernel can be attributed to its 

flexibility in handling data with varying degrees of 

non-linearity. This kernel function allows for a more 

nuanced mapping of the input space to the feature 

space, potentially capturing subtle relationships that 

other kernel functions might miss. The marginal 

difference in performance between the Exponential 

RBF and standard RBF kernels (R² = 0.9207 vs. 

0.9201) suggests that both kernels are well suited for 

this particular problem domain. This similarity in 

performance might indicate that the underlying 

relationships in the data are predominantly Gaussian, 

which aligns well with the many physical phenomena 

in structural engineering. It is worth noting that the 

choice of kernel and its parameters (such as the gamma 

value for RBF kernels) can significantly impact SVM 

performance. The reported results likely represent the 

outcome of careful hyperparameter tuning, which is 

crucial for optimizing the SVM models. 

3.1.3 Comparison with Linear Regression 

The multi-linear regression model, commonly used in 

traditional structural prediction, achieved an R² of 

0.8873, lower than all machine learning models except 

the sigmoid kernel. Its higher MSE and RMSE 

indicate that while linear regression offers reasonable 

approximations, it lacks the precision to model 

complex, non-linear data. The performance of the 

multi-linear regression model serves as a baseline for 

comparison, representing the current standard in many 

structural engineering applications. Its R² of 0.8873 

indicates that it can explain approximately 88.73% of 

the variance in the T-period data, which is suitable for 

a linear model dealing with inherently non-linear 

phenomena. However, the superior performance of the 

machine learning models, particularly the ANN- and 

RBF-based SVMs, highlights the limitations of linear 

approaches in capturing the full complexity of 

structural behavior. The higher MSE and RMSE 

values for the linear regression model quantify how 

much this approach misses non-linear relationships in 

the data. This comparison underscores the potential 

benefits of adopting more sophisticated modeling 

techniques in structural engineering practice. 

Although linear regression models offer simplicity and 

interpretability, the increased accuracy provided by 

machine learning approaches could lead to more 

efficient and reliable structural designs, especially in 

complex or critical applications. 

 

3.2 Correlative description  

 

Figure 3: The correlative matrix of Input Features to 

the corresponding T-period 

The correlative matrix is depicted in figure 3. 

visualizes the correspondence between various input 

features and the T-period. The x-axis likely represents 

different structural parameters (e.g., height, stiffness, 

and mass distribution), while the y-axis shows the 

strength and direction of the correlation with the T-

period. Darker colors typically indicate stronger 

impact of studied input values on yielding high 

predicted of T-value either positive or negative. This 

correlative relationship provides valuable insights into 

the structural parameters that significantly influence 

the fundamental period such as height of the building 

and number of stories. This information is crucial for 

understanding the relative importance of different 

design factors and can guide engineers in prioritizing 

certain aspects of structural design to achieve the 

desired dynamic properties. 

The scatter plots shown in Figure 4, Figure 5, Figure 

6, and Figure 7 compare the predicted T-period values 

from the ANN and SVM models with the actual 

observed values, offering a visual representation of 

model performance. The x-axis in each plot represents 

the actual T-period values, while the y-axis represents 

the corresponding predictions from the models. 

Ideally, if the models were to predict perfectly, all 

points would align along the 45-degree line, 

represented as the dashed blue line in the plots. The 

first plot (Figure 2) compares the ANN model's 

performance with the actual T-period values. The 
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distribution of points closely populated around the 

ideal line reflects the ANN's capability to capture the 

underlying non-linear relationships in the data. 

However, some deviations are visible, particularly in 

the higher ranges, which may indicate areas where the 

model's predictions diverge slightly from reality. 

These deviations could signify either under- or over-

prediction, especially in more complex regions of the 

feature space. In the next set of plots (Figures 3 and 4), 

we observe the predictions made by the SVM models, 

emphasizing the best performance was assigned to the 

Exponential RBF kernel. The points in these scatter 

plots show a tight clustering around the ideal line, 

indicating high accuracy level in predicting T-period 

values. The Exponential RBF kernel's ability to map 

non-linear data into higher-dimensional spaces is 

evident from the improved alignment of points along 

the 45-degree line compared to other kernel functions 

(e.g., the Sigmoid kernel, which shows more 

significant deviations, as seen in Figure 5). Systematic 

deviations from the ideal line, especially in the case of 

the Sigmoid kernel, highlight areas of potential bias, 

suggesting that some models might consistently 

under-predict specific ranges of the T-period values. 

For instance, in the lower and upper extremes of the T-

period range, the points start to spread away from the 

line, indicating a loss of prediction accuracy in these 

regions. These scatter plots were as extent to the 

numerical performance metrics (e.g., R², MSE, 

RMSE) and provide an intuitive understanding of 

where each model excels or struggles. The visual 

insights gained from these plots can be beneficial in 

identifying specific ranges of the T-period where a 

model might require further tuning or refinement. 

While the numerical metrics offer an aggregate view 

of performance, the scatter plots reveal finer details of 

model behavior across different parts of the dataset, 

offering deeper insights into the underlying model 

dynamics. 

 

 

 

 

 

 

 

 

Figure 4: Predicted vs. Actual T-period for ANN 

Model 

 

Figure 5: Predicted vs. Actual T-period for SVM RBF 

Kernel Model 

 

 

Figure 6: Predicted vs. Actual T-period for SVM 

Exponential RBF Kernel Model 

 

Figure 7: Predicted vs. Actual T-period for SVM 

Sigmoid Kernel Model 
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Figure 8: Predicted vs. Actual T-period for SVM 

Rational Quadratic Kernel Model 

 

 

Figure 9: Predicted vs. Actual T-period for Linear 

Regression Model 

 

4. Summary of Conclusions 

The main highlights of the present study could be 

drawn as:  

1. The use of machine learning models, particularly 

SVM with embedded kernel Exponential RBF 

enhanced its capturing for accuracy over ANN model 

in increase 3% in predicting the fundamental period 

due to mapping the variables into high dimensionality 

vector space matrices which adapt with complex 

nature for dynamic response of RC structures.  

2. Limits have been noticed to models based linear 

regression for prediction accuracy of such non-linear 

dynamic variables as confirmed by high attributes of 

linear terms of performance metrics such as RMSE 

and MAE that fell behind reforming to non-linear 

relationships.  

3. Adapting feature selection in machine learning 

approach by usage of “Mutual Information” 

correlation could enhance the final accuracy of 

prediction of T-period values and sensitivity to the data 

features ; the findings showed that main geometry-

related parameters height of the building and number 

of stories were dependent impactful on the period of 

the vibration prediction while less parametric 

importance and independency relationship were 

assigned to the mass and span length of the structure.  

5. Extent of Use of Machine Learning approach in 

structural design 

Best use of machine learning techniques in structural 

design of reinforced concrete buildings that 

undergoes seismic loadings could be exploited in: 

A. Design Optimization: Accurate T-period 

predictions enable more efficient structural designs, 

optimizing safety and material use. The enhanced 

accuracy of the T-period prediction offered by 

machine learning models and feature selection 

correlation can significantly improve structural design 

efficiency. By precisely estimating the dynamic 

properties of a structure, engineers can fine-tune 

structural elements, enhance seismic performance, 

optimize mass distribution, and reduce design 

uncertainty. 

B. Code Enhancements: Current building codes rely 

on simplified empirical formulas for T-period 

calculations, which overlook the complex structural 

interactions. Machine-learning models can refine 

these formulas and offer more precise predictions. 

Integrating machine learning insights into building 

codes can revolutionize structural design practices by 

developing more sophisticated code equations, region-

specific adaptations, dynamic code updates, risk-based 

design approaches, and integration with performance-

based design. 

6. Future Recommendations 

 Although the machine learning models demonstrated 

strong performance, the dataset limited the study, 

which focused on RC structures with specific 

configurations (moment-resisting frames). The 

limitations include dataset specificity, seismic 

diversity, scale effects, and simplification of complex 
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phenomena. Future studies should focus on expanding 

the dataset to include diverse structural types and a 

broader range of seismic events. Additional research 

areas include the integration of additional parameters, 

material type, time-dependent modeling, uncertainty 

quantification, interpretable AI, hybrid modeling 

approaches, real-world validation, and adaptive 

learning systems. By addressing these limitations and 

pursuing avenues for future research, the application 

of machine learning in structural engineering can be 

further refined and expanded, potentially leading to 

significant advancements in structural design and 

analysis. 
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