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Abstract 

Stability analysis for nonlinear programming systems deals with the possible changes of the system parameters and/or 

equations that maintain the stability of the solutions. It is a crucial requirement to study the nonlinear system and its 

practical values, specifically the economic impact in most real-world applications. This paper presents some outcomes 

in connection with stability analysis corresponding to parametric conic vector optimization problems. For these last 

optimization problems, two novel types of P-Stability maps, which are the P-Stability notion map and the P-Stability 

perturbation map, are considered based on six kinds of sets: P-feasible set, P-solvability set, the first, second, third, 

and fourth kinds of P-Stability notion sets with respect to a specific domination cone P. Furthermore, qualitative 

characteristics of the P-Stability maps under some continuity and convexity assumptions on the objective function are 

provided and proved. Specifically, the connections between the P-Stability maps and the P-Stability notion set are 

investigated. Accordingly, these characteristics were extended to the P-perturbation maps. In addition, the idea of P-

stability has heavily used in different applications like network privacy, engineering fields, and some business 

financial models.  
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1. Introduction: 

 

     Studies related to stability and sensitivity analysis 

for optimization problems are necessary not just from 

a theoretical but also from a practical point of view. 

This follows from the numerous applications of 

optimization theory within different fields. Extensive 

research was done on the stability and sensitivity 

analysis of PVOP [3, 6–8, 10, 22, 33]. Stability is 

commonly related to qualitative analysis. In this paper, 

for stability, we study various continuity properties for 

the stability maps associated with parametric vector 

optimization problems. Sensitivity, on the other hand, 

is related to differential stability and is relevant to the 

quantitative analysis. It is fulfilled, in general, by the 

study of the derivative and sub-differential 

expressions of the map under consideration. 

     Many results for stability and sensitivity analysis 

have been stated and proven within vector 

optimization theory and applications [5, 9, 19–21, 

34,35]. Tanino [31, 32] has acquired some results 

related to sensitivity analysis for vector optimization 

problems (VOP) since several decades, based on the 

principle of contingent derivatives for set-valued maps 

pioneered by Aubin [2]. Then, in 1996, Kuk et al. 

expanded these results [18]. Notably, Shi investigated 

various quantitative results for the perturbation map 

associated with VOP, under some convexity 

assumptions [29, 30]. The existence of these 

assumptions leads to weaker results in comparison to 

the general case. This approach is referred to as the 

first approach or the Japanese one. 

     Simultaneously, the second approach, which is 

known as the Egyptian one, was presented by Osman 

in [24]. In this last proceeding, stability notions for 

single objective decision-making problems have been 

discussed using a parametric approach. Existing 

research on the qualitative analysis of fundamental 

notions in the parametric multi-objective convex 

programming problem, where the parameter exists in 

either the objective or in the constraint function, can 

be found in [24, 25]. Later, the stability notions for 

parametric optimization problems with parameters in 

both the objective and constraint functions were 

reinterpreted and qualitatively examined for multi-

objective convex programming problems with their 

various applications, e.g. [10, 11, 16]. 

      In the previous decay, it was noticed that the idea 

of P-stability has heavily used in network privacy, 

different engineering fields and some business 

applications. It may be used to create a complete 

polynomial randomized approximation system for 

graph masking and measurement risk in the context of 

online social networks [13,26].  

     This paper tackles the parametric conic vector 

optimization problems (PCVOP), where the 

optimization is restricted to being over a domination 

cone and is structured as follows. First, in the 

subsequent section, the basic problem is presented. 

Next, in Section 3, new types of P-Stability notion 

maps based on six kinds of sets, for PCVOP, are 

defined, where P denotes a cone. Moreover, 

qualitative properties are displayed and proved. Then 

in Section 4, the definition of the P-Stability 

perturbation map is extended, and some of its 

characteristics are shown. An illustrative example is 

given in Section 5 before Section 6 concludes the 

paper. 

2. Basic Problem 

 

     In this study, we investigate a parametric conic 

vector optimization problem (𝐸𝑃(𝑢)), for 𝑢 ∈ 𝑈 a 

perturbation vector parameter in ℝ𝑚, 

𝐸𝑃(𝑢)

→  {

𝑃 − 𝑚𝑖𝑛
𝑥∈𝑋(𝑢)

𝑓(𝑥, 𝑢) = (𝑓1(𝑥, 𝑢), 𝑓2(𝑥, 𝑢), … , 𝑓𝑝(𝑥, 𝑢)) 

subject to

𝑋(𝑢) = {𝑥 ∈ ℜ𝑛: 𝑔𝑖(𝑥, 𝑢) ≤ 0, 𝑖 = 1,… , 𝑞} ⊂ ℝ
𝑛

 

 

where 𝑓 is a 𝑝-dimensional objective function 

on ℝ𝑛 × ℝ𝑚,  𝑔  is a 𝑞-dimensional constraint 

function on  ℝ𝑛 × ℝ𝑚,  and 𝑋 identifies what is known 

by feasible decision set, in fact it is a set-valued map 

from  ℜ𝑚 to ℜ𝑛, and  𝑃 represents a nonempty pointed 

closed convex cone in ℝ𝑝 that acts as the objective 

space's domination cone. [23]. 

On the real-vector space ℝ𝑚, define the set-valued 

map 𝑌 [2]  by  

 

Y(u) = f(X(u), u)

= {y ∈ ℝp: y = f(x, u) for some x

∈ X(u)} 

     In the objective space, this map is regarded as the 

feasible set map. In order to define a solution to the 

problem (𝐸𝑃(𝑢)), a partial order is induced by the 

closed pointed with nonempty interior convex cone 𝑃 

in the objective space ℝ𝑝 is considered. If 𝑃  is 

pointed, then it contends that  

 𝑙(𝑃) = 𝑃 ∩ (−𝑃) = {0}. 
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 Consequently, for  𝑦, �̃� ∈ ℝ𝑝, we define the 

following partial orders 
𝑦 ≦𝑃 �̅�      iff   𝑦 − �̅� ∈ 𝑃 ∖ 𝑙(𝑃) = 𝑃 ∖ {0},  

𝑦 <𝑃 �̅�      iff   𝑦 − �̅� ∈ 𝑖𝑛𝑡(𝑃). 

    

The P-minimal points of a set are defined as follows 

in compliance with these orders: 

 

• Definition 2.1 (𝐏-minimal point)  

       For any set S ⊂ ℝp, ŷ ∈ S is called a P −minimal 

point of S with respect to P, if there is no y ∈ S s.t. 

y ≦P ŷ. Consequently, MinPS represents the set of 

all  P-minimal points of S. 

The "P-Minimization" in the above problem (EP(u)) 

is equivalent to obtaining the set MinPY(u) see e.g., 

[12]. In view of this solution concept, the following 

set-valued map Φ is defined 

 

Φ:ℝm → 𝒫(ℝp)                                 

u → Φ(u) = MinPY(u),
 

 

where 𝒫(ℝ𝑝) is the power set of ℝ𝑝, and is called the 

perturbation map. Tanino did, in fact, investigate the 

quantitative outcomes of this map's behavior [31, 32] 

which then was improved by Shi [29, 30]. 

    We end this section by stating some definitions 

regarding point-to-set maps which are serviceable 

through the paper. 

 

• Definition 2.2 (Compact set-valued map) 

       Consider A and B to be subsets of ℝn and ℝm, 

respectively, and let  F: A → 𝒫(B). The set-valued 

map F is uniformly compact near a point x0 ∈ A, if x0 

has an open neighborhood 𝒩 where  ∪x∈𝒩(x0) F(x)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is 

compact. F is called uniformly compact if it is 

uniformly compact near x for all x ∈ A. 

 

• Definition 2.3 (Upper semicontinuous set-

valued map) [1]  

       Consider A and B to be subsets of  ℝn and ℝm, 

respectively, and let  F: A → 𝒫(B). The set-valued 

map F is called sequentially upper semicontinuous 

(S.u.s.c) at a point x0 ∈ X, if for each sequence {xn} ⊂

A, converging to x0, and every sequence yn ∈ F(xn), 

we have dist(yn, F(x0)) → 0, n → ∞. F  is called 

S.u.s.c if it is S.u.s.c at x for all x ∈ A. 

 

• Definition 2.4 (Closed set-valued map)  

      Consider A and B to be subsets of  ℝn and ℝm, 

respectively, and let  F: A → 𝒫(B). F is closed if and 

only if  F(V)̅̅ ̅̅ ̅̅ ⊆ F(V̅) for any V ⊂ A. 

 

3. P-Stability Notion Sets and Maps 

 

      The current section is devoted to studying the 

stability of a certain efficient solution lying inside the 

domination cone (which is normally determined by 

decision-makers) against all possible variations in the 

relevant vector parameter and establishing the stability 

notions that include all vector parameter values that 

keep this specific solution within the efficient set or 

keep the feasible points converging to the efficient 

solution within the cone. These stability notions are 

called P-stability sets. Therefore, the new definitions 

of P-stability notion maps for the PCVOP are 

presented in the following series of definitions. 

 

• Definition 3.1 (The feasible set of parameters)  

        The feasible set of parameters, denoted by Fs,  for 

the parametric vector optimization problem EP is 

defined by 

FS = {u ∈ ℝ
m ∶ X(u) ≠ ∅}. 

 

• Definition 3.2 (The P-solvability set) 

  The P-solvability set, denoted by SS
P , for the 

problem EP is defined by 

SS
P = {u ∈ ℝm: MinPY(u) ≠ ∅}. 

 

• Definition 3.3 (The first kind P-Stability notion 

map) 

       The first kind P-stability notion map, denoted by 

S1
P, is defined as the set-valued map 

 
ℝn → 𝒫(ℝm)                                                                         

x̅ → S1
P(x̅) = {u ∈ Ss

P: y̅ = f(x̅, u) ∈ MinPY(u)}.
 

For a given efficient solution x̅ ∈ ℜn, S1
P(x̅) is named 

the first kind P-Stability set. 

 

• Definition 3.4 (The second kind P-Stability 

notion map 𝑺𝟐
𝑷) 

     Let u̅ ∈ SS
P  with associated efficient solution x̅ so 

that f(x̅, u̅) ∈ MinPY(u̅), and ℑ(I) denotes either the 

unique side of the feasible decision set X(u̅) which 

contains x̅ or int(X(u̅)), where I = {1,2, … , l} ⊂

{1,2, … , q}, thus 

ℑ(I) = {x ∈ ℝn:  gi(x, u̅) = 0;    if  i ∈ I  and  gi(x, u̅)

< 0;    if  i ∉ I} 

     The second kind P-Stability notion map S2
P is 

defined as the set-valued map by 
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ℝn →  𝒫(ℝm)                                                                       

x̅ → S2
P(x̅, I) = {u ∈ SS

P: MinPY(u̅) ∩ ℑ(I) ≠ ∅}.
 

The set S2
P(x̅, I), for a feasible solution x̅, is said to be 

the second kind P-Stability set 

 

• Definition 3.5 (The third kind P-Stability 

notion map 𝑺𝟑
𝑷) 

      Assume that u̅ ∈ SS
P with an efficient solution x̅ 

where f(x̅, u̅) ∈  MinPY(u̅), x
∗ is a feasible point in 

X(u̅) and δ > 0. Then, the third kind P-Stability notion 

map  S3
P is the set-valued map defined over ℝn × ℝn ×

[0,∞[ into ℝm by 

S3
P(x̅, x∗, δ) = {u ∈ SS

P: ‖f(x∗, u) − f(x̅, u̅)‖

< δ, f(x̅, u) ∈ MinPY(u)}. 

For given x̅, x∗and δ, the set S3
P(x̅, x∗, δ) denotes the 

third kind P-Stability set.  

 

• Definition 3.6 (The fourth kind P-Stability 

notion map 𝑺𝟒
𝑷) 

      For an efficient solution x̅ with u̅ ∈ SS
P such that 

f(x̅, u̅) ∈  MinPY(u̅) and δ > 0, the fourth kind P-

Stability set-valued map S4
P is defined by, 

S4
P(x̅, δ) = {u ∈ SS

P: ∃x ∈ X(u̅), ‖f(x, u) − f(x̅, u̅)‖

< δ, f(x̅, u) ∈ MinPY(u)}. 

The set S4
P(x̅, δ), for a given x̅ and δ, denotes the fourth 

kind P-Stability set.  

 

     It is to be noted that, the first kind P-stability set-

valued map at a given efficient solution �̅�, with 

associated parameter �̅�, collects all the parameters 

which will keep �̅� a minimizer. The second kind P-

stability map is linked with the constraint function and 

collects those parameters which reserve the fact that �̅� 

is a minimizer. However, the third and fourth kinds 

collect all the parameters for which the objective 

function at those parameters lies in the neighborhood 

of the optimum value 𝑓(�̅� , �̅�). In subsequent some 

mathematical properties for the 𝑃-stability sets 𝑆𝑖
𝑃(�̅�) 

and P-Stability notion maps 𝑆𝑖
𝑃 (𝑖 = 1,2,3,4) are stated 

and proved.  

 

• Proposition 3.1 (Uniqueness of 𝑺𝟏
𝑷(𝒙))  

      If f is strictly convex on ℝn × ℝm, and x̅1, x̅2 are 

different efficient solutions, then 

S1
P(x̅1) ∩ S1

P(x̅2) = ∅. 

 Proof. By contradiction, assume that 𝑆1
𝑃(�̅�1) ∩

𝑆1
𝑃(�̅�2) ≠ ∅, then ∃𝑢0 ∈ 𝑆1

𝑃(�̅�1) ∩ 𝑆1
𝑃(�̅�2), i.e., 𝑢0 

corresponds to an efficient solution �̅�1 and  �̅�2. This is 

in opposition to the fact that 𝑓 being strictly convex. 

So, the proposition is proved. 

 

• Proposition 3.2 (Uniform compactness of 𝐒𝟏
𝐏) 

       If f is a convex function on ℝn × ℝm and the map 

Φ = MinPY(. ) is closed, then the P-Stability notion 

map S1
P is uniformly compact. 

Proof. It is enough to proof that S1
P(x̅) is closed, for 

any efficient solution x̅  ∈ ℝn. Let {uk} be a sequence 

in S1
P(x̅) and converging to u0 in ℝm. It is sufficient to 

show that u0 ∈ S1
P(x̅). We have y̅k = f(x̅, uk) ∈

MinPY(uk). In fact, f is continuous, as it is convex 

function in [27], then  

lim
k→∞

f(x̅, uk) = f (x̅, lim
k→∞

uk) = f(x̅, u0) 

Since 𝛷 = 𝑀𝑖𝑛𝑃𝑌(. ) is closed, then 𝑓(�̅�, 𝑢0) ∈

𝑀𝑖𝑛𝑃𝑌(𝑢0), this means that 𝑢0 ∈ 𝑆1
𝑃(�̅�). Thus 𝑆1

𝑃(�̅�)  

is closed, and therefore 𝑆1
𝑃 is uniformly compact at �̅�. 

So, the proposition is proved.  

 

• Proposition 3.3 (Upper semi-continuity of 𝑺𝟏
𝑷)   

      The P-Stability notion map S1
P is sequentially 

upper semicontinuous at any efficient solution x̅ ∈ ℝn, 

if f is a convex function on ℝn × ℝmand Φ =

MinPY(. ) is closed. 

Proof. Let {x̅k} ⊂ ℝ
n, such that x̅k → x̅, uk ∈ S1

P(x̅k), 

and uk → u0, this is valid following the fact that S1
Pis 

uniformly compact. To prove the proposition, it is 

enough to show that u0 ∈ S1
P(x̅). Since uk ∈ S1

P(x̅k), 

this means that y̅k = f(x̅k, uk) ∈ MinPY(uk). In fact, f 

is continuous, since f is convex. So 

lim
k→∞

y̅k = lim
k→∞

f(x̅k, uk) = f ( lim
k→∞

x̅k, lim
k→∞

uk)

= f(x̅, u0). 

Hence, 𝑓(�̅�, 𝑢0) ∈ 𝑀𝑖𝑛𝑃𝑌(𝑢0), because 𝑀𝑖𝑛𝑃𝑌(. ) is 

closed, this means that 𝑢0 ∈  𝑆1
𝑃(�̅�). So, the 

proposition is proved.  

     The uniqueness of the second kind stability set is 

proved in an analogous manner as Proposition 3.1. 

Following are some properties that are substantial for 

the P-Stability set 𝑆3
𝑃(�̅�, 𝑥∗, 𝛿) and P-Stability notion 

map 𝑆3
𝑃. 

 

• Proposition 3.4 (Uniqueness of 𝑺𝟑
𝑷(𝒙, 𝒙∗, 𝜹)) 

      If f is one to one function, x1
∗ and x2

∗  are two 

distinct feasible points in X(u̅), and δ1, δ2 > 0 are 

arbitrary numbers, such that S3
P(x̅, x1

∗, δ1) ≠

S3
P(x̅, x2

∗ , δ2).  

then 

S3
P(x̅, x1

∗, δ1) ∩ S3
P(x̅, x2

∗ , δ2) = ∅. 
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Moreover, if x̅1 and x̅2 are two distinct efficient 

solutions, then for any feasible point x∗, 

S3
P(x̅1, x

∗, δ1) ∩ S3
P(x̅2, x

∗, δ2) = ∅. 

Proof. Suppose the contrary, i.e., ∃u0 ∈

S3
P(x̅, x1

∗ , δ1) ∩ S3
P(x̅, x2

∗ , δ2). Following the definition 

of S3
P(x̅, x∗, δ) we get that f(x̅, u0) ∈  MinPY(u0)  and  

 

‖𝑓(𝑥1
∗, 𝑢0) − 𝑓(�̅�, �̅�)‖ < 𝛿1, (1) 

‖𝑓(𝑥2
∗, 𝑢0) − 𝑓(�̅�, �̅�)‖ < 𝛿2, (2) 

 

Inequalities (1) and (2) implies that 

‖f(x1
∗, u0) − f(x2

∗ , u0)‖

≤ ‖f(x1
∗ , u0) − f(x̅, u̅)‖

+ ‖f(x2
∗ , u0) − f(x̅, u̅)‖ < δ1 + δ2

< 2δ. 

where 𝛿 = 𝑚𝑎𝑥(𝛿1, 𝛿2) and is an arbitrary positive 

number. Hence, 𝑓(𝑥1
∗, 𝑢0) = 𝑓(𝑥2

∗, 𝑢0) which leads to 

contradiction with the assumption that 𝑓 is one-to-one. 

In an analogous manner, the second equality can be 

proved.  

 

• Proposition3.5 (Uniform compactness of P-

Stability notion map 𝐒𝟑
𝐏)  

     If f is a convex function on ℝn × ℝm and the map 

Φ = MinPY(. ) is closed, then the P-Stability notion 

map S3
P is uniformly compact (locally bounded) at 

any efficient solution x̅ ∈ ℝn. 

Proof. To prove the proposition, it is enough to show 

that  S3
P(x̅, x∗, δ) is closed. Consider a sequence {uk}  

k→∞
→   u0, where {uk}  in S3

P(x̅, x∗, δ) i.e.  

‖f(x∗, uk) − f(x̅, u̅)‖ ≤ δ − ϵ, (3) 

where 𝜖 ≪ 1, and  𝑓(�̅�, 𝑢𝑘) ∈  𝑀𝑖𝑛𝑃𝑌(𝑢𝑘). Since 

𝑀𝑖𝑛𝑃𝑌(. ) is closed and 𝑓 is convex, then 𝑓(�̅�, 𝑢0) ∈

𝑀𝑖𝑛𝑃𝑌(𝑢0) and 

lim
k→∞

f(x∗, uk) = f(x
∗, u0). 

So, for 𝑘 ≫ 1 

‖f(x∗, uk) − f(x
∗, u0)‖ < ϵ, (4) 

 

Inequalities (3) and (4) implies that  

‖f(x∗, u0) − f(x̅, u̅)‖

≤ ‖f(x∗, uk) − f(x
∗, u0)‖

+ ‖f(x∗, uk) − f(x̅, u̅)‖ < δ. 

Then 𝑢0 ∈ 𝑆3
𝑃(�̅�, 𝑥∗, 𝛿), which proves the proposition. 

 

• Proposition 3.6 (Upper semi-continuity of P-

Stability notion map 𝑺𝟑
𝑷) 

     The P-Stability notion map S3
P is sequentially upper 

semi-continuous on any efficient solution x̅ ∈ ℝn, if 

f is a convex function on ℝn × ℝmand Φ = MinPY(. ) 

is closed 

Proof. Following the compactness of 𝑆3
𝑃, let {�̅�𝑘} ⊂

ℝ𝑛 be a sequence of feasible solutions, such that  �̅�𝑘 →

�̅�  and  𝑢𝑘 ∈ 𝑆3
𝑃(�̅�𝑘 , 𝑥

∗, 𝛿)  such that 𝑢𝑘 → 𝑢0.  

To prove the proposition, we must show that 𝑢0 ∈

𝑆3
𝑃(�̅�, 𝑥∗, 𝛿). Since 𝑢𝑘 ∈ 𝑆3

𝑃(�̅�𝑘 , 𝑥
∗, 𝛿), then �̅�𝑘 =

𝑓(�̅�, 𝑢𝑘) ∈ 𝑀𝑖𝑛𝑃𝑌(𝑢𝑘)and ‖𝑓(𝑥∗, 𝑢𝑘) − 𝑓(�̅�, �̅�)‖ <

𝛿. Moreover, since 𝑓 is a convex function on 

ℝ𝑛 × ℝ𝑚, this implies that 𝑓 is continuous, this leads 

to  

lim
k→∞

y̅k = lim
k→∞

f(x̅, uk) = f (x̅, lim
k→∞

uk) = f(x̅, u0). 

 

But 𝑀𝑖𝑛𝑃𝑌(. ) is closed, so 𝑓(�̅�, 𝑢0) ∈ 𝑀𝑖𝑛𝑃𝑌(𝑢0). 

Moreover,  

lim
k→∞

f(x∗, uk) = f (x
∗, lim
k→∞

uk) = f(x
∗, u0). 

Therefore, for 𝑘 ≫ 1 

‖f(x∗, u0) − f(x̅, u̅)‖

≤ ‖f(x∗, u0) − f(x
∗, uk)‖

+ ‖f(x∗, uk) − f(x̅, u̅)‖ < δ. 

We have 

‖𝑓(𝑥∗, 𝑢0) − 𝑓(�̅�, �̅�)‖ < 𝛿,

𝑓(�̅�, 𝑢0) ∈ 𝑀𝑖𝑛𝑃𝑌(𝑢0). 

Consequently, 

u0 ∈ S3
P(x̅, x∗, δ). 

Thus, the proposition is proved.  

 

Thereafter, some properties for the P-Stability set 

𝑆4
𝑃(�̅�, 𝛿) and P-Stability notion map 𝑆4

𝑃 are stated and 

proved. 

 

• Proposition 3.7 (Uniqueness of 𝑺𝟒
𝑷(𝒙, 𝜹)) 

      Let f be one-to-one function and δ1, δ2 two 

arbitrary distinct positive numbers such that 

S4
P(x̅, δ1) ≠ S4

P(x̅, δ2). Then, 

 

𝑆4
𝑃(�̅�, 𝛿1) ∩ 𝑆4

𝑃(�̅�, 𝛿2) = ∅. 

Proof. If there exists 𝑢0 ∈ 𝑆4
𝑃(�̅�, 𝛿1) ∩ 𝑆4

𝑃(�̅�, 𝛿2) (i.e., 

assume the contrary). Then, from the definition of 

𝑆4
𝑃(�̅�, 𝛿), we get 𝑓(�̅�, 𝑢0) ∈ 𝑀𝑖𝑛𝑃𝑌(𝑢0) and  

 

∃x1 ∈ X(u̅), ‖f(x1, u0) − f(x̅, u̅)‖ < δ1, (5) 

∃x2 ∈ X(u̅), ‖f(x2, u0) − f(x̅, u̅)‖ < δ2, (6) 

 

There are two cases for 𝑥1 and 𝑥2 

Case 1. If  𝑥1 ≠ 𝑥2,  then from (5) and (6) we get  

‖f(x1, u0) − f(x2, u0)‖

≤ ‖f(x1, u0) − f(x̅, u̅)‖

+ ‖f(x2, u0) − f(x̅, u̅)‖ < 2δ 
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where 𝛿 = 𝑚𝑎𝑥(𝛿1, 𝛿2), and is arbitrary positive 

number. This implies that 𝑓(𝑥1, 𝑢0) = 𝑓(𝑥2, 𝑢0), but 

this contradicts the assumption   that 𝑓 is one to one.  

Case 2. Otherwise, if 𝑥1 = 𝑥2,  the contradiction is 

obtained by the assumption that 𝑆4
𝑃(�̅�, 𝛿1) ≠

𝑆4
𝑃(�̅�, 𝛿2). So, the proposition is proved. 

• Proposition 3.8 (Uniform compactness of 𝑺𝟒
𝑷)  

    The P- The P-Stability notion map S4
P is uniformly 

compact at any efficient solution x̅ ∈  ℝn, if f is 

convex on ℝn × ℝm and Φ = MinPY(. ) is closed. 

Proof. To prove the proposition, it is enough to show 

that  S4
P(x̅, δ) is closed. For this sake consider a 

sequence {uk}  
k→∞
→   u0 , where {uk} in S4

P(x̅, δ). So 

there exist xk ∈ X(u̅) such that 

‖f(xk, uk) − f(x̅, u̅)‖ < δ, (7) 

and  f(x̅, uk) ∈  MinPY(uk). Since MinPY(. ) is closed 

and f is continuous, then f(x̅, u0) ∈  MinPY(u0) and, 

lim
k→∞

f(x, uk) = f(x, u0) 

for any x ∈ X(u̅). Thus, for k0 big enough, we have 

‖f(xk0 , uk0) − f(xk0 , u0)‖ < ϵ, (8) 

where ϵ ≪ 1. Since ϵ is an arbitrary positive number 

Inequalities (7) and (8) implies that 

‖f(xk0 , u0) − f(x̅, u̅)‖

≤ ‖f(xk0 , uk0) − f(xk0 , u0)‖

+ ‖f(xk0 , uk0) − f(x̅, u̅)‖ < δ. 

Then u0 ∈ S4
P(x̅, δ). So, the proposition is proved. 

 

• Proposition 3.9 (Upper semi-continuity of 𝑺𝟒
𝑷) 

     The P-Stability notion map S4
P is uniformly 

compact at any efficient solution x̅ ∈  ℝn, if f is 

convex on ℝn × ℝm and Φ = MinPY(. ) is closed. 

Proof. Consider a sequence {�̅�𝑘} ⊂ ℜ
𝑛 , 𝑠. 𝑡. �̅�𝑘 → �̅�  

and  𝑢𝑘 ∈ 𝑆4
𝑃(�̅�, 𝛿)  such that 𝑢𝑘 → 𝑢0  to prove the 

proposition, we must show that 𝑢0 ∈ 𝑆4
𝑃(�̅�, 𝛿). Indeed, 

𝑢𝑘 ∈ 𝑆4
𝑃(�̅�, 𝛿)  then  

∃xk ∈ X(u̅), ‖f(xk, uk) − f(x̅, u̅)‖ < δ 

and  

�̅�𝑘 = 𝑓(�̅�, 𝑢𝑘) ∈ 𝑀𝑖𝑛𝑃𝑌(𝑢𝑘).  

Since 𝑓 is convex, then 𝑓 is continuous and this means 

that 

𝑙𝑖𝑚
𝑘→∞

�̅�𝑘 = 𝑙𝑖𝑚
𝑘→∞

𝑓(�̅�, 𝑢𝑘) = 𝑓(�̅�, 𝑢0). 

Since 𝑀𝑖𝑛𝑃𝑌(. ) is closed. Hence, 𝑓(�̅�, 𝑢0) ∈

 𝑀𝑖𝑛𝑃𝑌(𝑢0) and for any 𝑥 ∈ 𝑋(�̅�), 

lim
k→∞

f(x, uk) = f (x, lim
k→∞

uk) = f(x, u0). 

Therefore, for 𝑘0 big enough, we have 

‖f(xk0 , u0) − f(x̅, u̅)‖

≤  ‖ f(xk0 , u0) − f(xk0 , uk0) ‖

+ ‖ f(xk0 , uk0) − f(x̅, u̅) ‖ < δ. 

 

Hence, ‖𝑓(𝑥𝑘0 , 𝑢0) − 𝑓(�̅�, �̅�)‖ ≤ 𝛿 and 𝑓(�̅�, 𝑢0) ∈

 𝑀𝑖𝑛𝑃𝑌(𝑢0), then 𝑢0 ∈ 𝑆4
𝑃(�̅�, 𝛿) and the proposition 

is proved.  

    The above-stated propositions prove the following 

theorem on the novel P-stability set-valued maps of 

the first, second, and third kinds, which form the core 

result of this paper. 

 

• Theorem 3.1 The P-Stability notion maps 

{Si
P}
i=1,3,4

 are uniformly compact, and 

sequentially upper semi-continuous at any 

efficient solution x̅ ∈  ℜn, if f is convex on 

ℝn × ℝm and MinPY(. ) is closed.  

 

 

4. P-Perturbation Maps 

 

    Initially, we want to define the P-perturbation set-

valued maps over ℝ𝑛 into 𝒫(ℝ𝑝) which are denoted 

by 𝜓𝑖
𝑃, for 𝑖 = 1,2,3 and 4, as follows: 

 

• Definition 4.1 (The P-perturbation maps 

{𝝍𝒊
𝑷}
𝒊=𝟏,𝟐,𝟑,𝟒

) 

      Define the set-valued maps ψi
P, for i =

1,2,3 and 4,  from ℝn to 𝒫(ℝp) as follows: 

ψi
P(x̅) = {y̅ ∈ ℜp: y̅ = f(x̅, u̅), u̅ ∈ Si

P(x̅)},

for  i = 1,2,3,4. 

For sake of clarity the compact notation 𝑆𝑖
𝑃(�̅�) is used 

for all the 𝑆𝑖
𝑃. Important properties for the set-valued 

maps 𝜓𝑖
𝑃  (𝑖 = 1,2,3,4) are introduced and proved in 

consequent. It is to be noted that, if 𝑓 is strictly convex 

on ℝ𝑛 × ℝ𝑚 and �̅�1, �̅�2 are different efficient solutions 

in ℝ𝑛; then 

ψi
P(x̅1) ∩ ψi

P(x̅2) = ∅, i = 1,2 

This follows from the uniqueness of 𝑆𝑖
𝑃 (Proposition 

3.1). Similarly, if 𝑓 is one-to-one, and  �̅�1and �̅�2 are 

different efficient solutions in ℝ𝑛, then 

ψi
P(x̅1) ∩ ψi

P(x̅2) = ∅, i = 3,4 

(Proposition 3.4, Proposition 3.7). 

 

• Theorem 4.1 (Upper semi-continuity of 

{𝛙𝐢
𝐏}
𝐢=𝟏,𝟐,𝟑,𝟒

)  
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    If f is convex on ℝn × ℝm, then the P-perturbation 

map ψi
P (i = 1,3,4) is upper semi-continuous at any 

efficient solution x̅ ∈ ℝn. 

Proof. Consider a sequence of efficient solutions 

{x̅k} ⊂ ℜ
n such that x̅k

k→∞
→  x̅ and let y̅k ∈ ψi

P(x̅k) 

such that y̅k
k→∞
→  ŷ. To manifest the theorem, it is 

enough to prove that ŷ ∈ ψi
P(x̅). Assume the contrary, 

i.e., there exists no u ∈ Si
P(x̅), such that ŷ = f(x̅, u) ∈

 MinPY(u).  

 

We have, 

ŷ = lim
k→∞

y̅k = lim
k→∞

ψi
P(x̅k) = lim

k→∞
f(x̅k, u̅k) for u̅k

∈ Si
P(x̅k). 

Since f is convex function, then f is continuous [27], 

and so  

ŷ = lim
k→∞

f(x̅k, u̅k) = f ( lim
k→∞

x̅k, lim
k→∞

u̅k). 

The   uniform compactness of Si
P(x̅)  (Proposition 3.2, 

Proposition 3.5, Proposition 3.8), implies that ∃û ∈

Si
P(x̅) such that lim

k→∞
u̅k = û. So  

ŷ = f ( lim
k→∞

x̅k, lim
k→∞

u̅k) = f(x̅, û), û ∈ Si
P(x̅). 

This is contradicting with the assumption. Therefore, 

the theorem is proved.  

 

     The remainder of this section is dedicated to 

defining the P-Stability perturbation maps. For 𝑖 =

1,2,3,4, the perturbation map is denoted by Θ𝑖
𝑃, and 

defined as the composite between the inverse of P-

Stability notion (𝑆𝑖
𝑃)−1, if it exists, and the 

perturbation map 𝜓𝑖
𝑃 (𝑖 = 1,2,3,4) as follows: 

Θi
P: ℝm

(Si
P)
−1

→      ℝn
ψi
P

→ 𝒫(ℝp); 

i.e., for 𝑖 = 1,2,3,4  

Θi
P: ℝm → 𝒫(ℝp)                                                                                  

u → Θi
P(u) = ψi

P ∘ (Si
P)
−1
(u) =  ψi

P ((Si
P)
−1
(u))

 

     The connection between the Egyptian and Japanese 

approaches stems from the definitions of 𝜓𝑖
𝑃  and 

 𝑆𝑖
𝑃 (𝑖 = 1,2,3,4).  

 

 

5. Illustrative Example 

 

     Indeed, to obtain the 𝑃-stability sets 𝑆𝑖
𝑃(�̅�), for a 

feasible solution �̅� and 𝑖 = 1,2, the subsequent steps 

can be applied 

Step 1: Frame the optimization problem and involve 

the parameters under investigation. 

Step 2: Start with any certain �̅� ∈ 𝑆𝑆
𝑃 and use a suitable 

software package to obtain efficient solution �̅�. 

Step 3: Use any scalarization technique, for example 

the non-negative weighting [13, 14] to form a single 

objective nonlinear programming problem 

corresponding to  (𝐸𝑃(𝑢)). For 𝑤 ∈ 𝑊 = {𝑤 ∈

ℝ𝑝 : ∑ 𝑤𝑗
𝑝
𝑗=1 = 1,𝑤𝑗 ≥ 0}, we get 

 

𝐸𝑃,𝑤(𝑢)

→  

{
 
 

 
 
𝑃 − 𝑚𝑖𝑛

𝑥∈𝑋(𝑢)
∑𝑤𝑗  𝑓𝑗(𝑥, 𝑢)

𝑝

𝑗=1

                          

subject to                                                       

𝑋(𝑢) = {𝑥 ∈ ℝ𝑛: 𝑔𝑖(𝑥, 𝑢) ≤ 0, 𝑖 = 1,… , 𝑞}

 

Step 4: Formulate the Kuhn-Tucker conditions (KTC) 

(corresponding to side I  in case of S2
P ) [4, 15, 17, 28] 

of the problem EP,w(u) 

{

∂Fw(x, u)

∂xj
+∑αr

∂gr(x, u)

∂xj

q

r=1

= 0,    j = 1, … , n

  αigi(x, u) = 0 and  αi ≥ 0 ,             i = 1, … , q 

 

 

where 

Fw(x, u) = ∑wj fj(x, u)

p

j=1

 

 

Step 5: Get the set of all 𝑃-minimal points 𝑀𝑖𝑛𝑃𝑌(𝑢). 

Step 6: The 𝑃-stability set  𝑆𝑖
𝑃(�̅�) is collected as the 

intersection between the unions of the sets 

corresponding to the possible values of the multipliers 

as in [24, 25] and the set of parameters with optimum 

in 𝑀𝑖𝑛𝑃𝑌(𝑢). Note that, this last set lies in the 

domination cone 𝑃. 

Consider the following illustrative example, for 𝑢 ∈

ℜ, 

𝐸𝑃(𝑢)

→  {

𝑃 − 𝑚𝑖𝑛
𝑥∈𝑋(𝑢)

𝑓(𝑥, 𝑢) = (𝑢𝑥1, 𝑢𝑥2)                                                         

subject to                                                                                                 

𝑋(𝑢) = {𝑥 = (𝑥1, 𝑥2) ∈ ℝ
2: 𝑥1 + 𝑥2 ≥ 𝑢, 𝑥1 ≤ 𝑢, 𝑥2 ≤ 𝑢} ⊂ ℝ

2

 

where 𝑃 is the top half of the first quadrant, i.e.  

P = {(y1, y2) ∈ ℝ+
2 : y2 ≥ y1}. 

 

We have 

Y(u) = {y ∈ ℝ2: y = f(x, u), x ∈ X(u)}                                                 

= {y = (y1, y2) ∈ ℝ
2: y1 + y2 ≥ u

2, y1 ≤ u
2, y2 ≤ u

2},
 

and  
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Φ(u) = MinPY(u)                                                                                          

= {(y1, y2) ∈ Y(u): (Y(u) − (y1, y2)) ∩ (−P) = {0}}    

= {(y1, y2) ∈ Y(u): y2 = −y1 + u
2, 0 ≤ y1 ≤ y2 ≤ u

2}.

 

The solvability set is then 

SS
P = {u ∈ ℝ: u = x1 + x2:  (x1, x2) ∈ X(u), 0 ≤ ux1

≤ ux2 ≤ u
2}. 

 

The Lagrange operator for the weighted single valued 

objective function is 

L(x1, x2, α1, α2, α3, u)
= wux1 + (1 − w)ux2
− α1(x1 + x2 − u) + α2(x1 − u)
+ α3(x2 − u), 

where 0 ≤ w ≤ 1, and the Kuhn-Tucker conditions 

are 

K(x, u) = 0, 
where 

K(x, u) =

[
 
 
 
 

wu − α1 + α2
(1 − w)u − α1 + α3
−α1(x1 + x2 − u)

α2(x1 − u)

α3(x2 − u) ]
 
 
 
 

 

 

To obtain the first kind stability set 𝑆1
𝑃((0,1)), Steps 1 

through 5 are applied. In fact, for the KTC to be valid 

at the parameter �̅� = 1 with feasible solution �̅� =
(0,1) ∈ 𝑋(1), then 𝛼2 = 0. Hence, 

                      wu − α1 = 0
(1 − w)u − α1 + α3 = 0

 

Then the first kind stability set is  

𝑆1
𝑃((0,1)) = {𝑢 ∈ 𝑆𝑆

𝑃: 𝑢 = 2𝛼1 − 𝛼3, 2𝛼1 ≥ 𝛼3 ≥ 0}. 
 
Moreover, the second kind stability set 𝑆2

𝑃(�̅�, {1}) is 

obtained in an analogous manner by applying Steps 1 

through 5, but with KTC restricted to 𝐼. The KTC 

restricted to the linear side 𝑔1(𝑥) are  
              𝑤𝑢 − 𝛼1 = 0

  (1 − 𝑤)𝑢 − 𝛼1 = 0

𝛼1(𝑥1 + 𝑥2 − 𝑢) = 0
 

Hence, 

𝑆2
𝑃(�̅�, {1}) = {𝑢 ∈ 𝑆𝑆

𝑃: 𝑢 = 2𝛼1, 𝛼1 ≥
1

2
}. 

     To obtain the first kind stability set 𝑆1
𝑃((0,1)), 

Steps 1 through 5 are applied. In fact, for the KTC to 

be valid at the parameter �̅� = 1 with feasible solution 

�̅� = (0,1) ∈ 𝑋(1), then 𝛼2 = 0. Hence, 
                      𝑤𝑢 − 𝛼1 = 0
(1 − 𝑤)𝑢 − 𝛼1 + 𝛼3 = 0

 

Then the first kind stability set is  

𝑆1
𝑃((0,1)) = {𝑢 ∈ 𝑆𝑆

𝑃: 𝑢 = 2𝛼1 − 𝛼3, 2𝛼1 ≥ 𝛼3 ≥ 0}. 
 

     Moreover, the second kind stability set 

𝑆2
𝑃(�̅�, {1}) is obtained in an analogous manner by 

applying Steps 1 through 5, but with KTC restricted to 

𝐼. The KTC restricted to the linear side 𝑔1(𝑥) are  
              𝑤𝑢 − 𝛼1 = 0

  (1 − 𝑤)𝑢 − 𝛼1 = 0

𝛼1(𝑥1 + 𝑥2 − 𝑢) = 0
 

Hence, 

𝑆2
𝑃(�̅�, {1}) = {𝑢 ∈ 𝑆𝑆

𝑃: 𝑢 = 2𝛼1, 𝛼1 ≥
1

2
}. 

 

      The third kind P-stability set 𝑆3
𝑃(�̅�, 𝑥∗, 𝛿), for a 

parameter �̅� ∈ 𝑆𝑆
𝑃, with efficient solution �̅� ∈ 𝑋(�̅�), 

and feasible point 𝑥∗ ∈ 𝑋(�̅�), is obtained as the 

intersection between the set of parameters 𝑢 with 

optimum in 𝑀𝑖𝑛𝑃𝑌(𝑢) and those with image, under 

the objective function, is in the neighborhood of 

𝑓(�̅�, �̅�). 
 

      Consider the parameter �̅� = 1 ∈ 𝑆𝑆
𝑃, with feasible 

solution �̅� = (0,1) ∈ 𝑋(1). Let 𝑥∗ = (1,1) ∈ 𝑋(1) 

and 𝛿 > 0, then  𝑓((0,1), 1) = (0,1) and 

𝑓((1,1), 𝑢) = (𝑢, 𝑢). As 𝑓((0,1), 𝑢) ∈ 𝑀𝑖𝑛𝑃𝑌(𝑢), 

then 𝑢 ≥ 1. For ‖(𝑦1, 𝑦2)‖ = 𝑤|𝑦1| + (1 − 𝑤)|𝑦2| a 

norm on ℝ2, with 0 ≤ 𝑤 ≤ 1, the third kind P-stability 

set is 

𝑆3
𝑃((0,1), (1,1), 𝛿)

= {𝑢 ∈ 𝑆𝑆
𝑃: 1 ≤ 𝑢 ≤ (1 + 𝛿) − 𝑤}. 

 

     Note that, if 𝛿 < 𝑤, then 𝑆3
𝑃((0,1), (1,1), 𝛿) = ∅, 

for the chosen norm. Lastly, the fourth kind P-stability 

set is  

𝑆4
𝑃((0,1), 𝛿) = {𝑢 ∈ 𝑆𝑆

𝑃: ∃(𝑥1, 𝑥2) ∈ 𝑋(𝑢), 𝑢

≥ 1,𝑤(𝑢𝑥1) + (1 − 𝑤)|1 − 𝑢𝑥2|
< 𝛿 }. 

 

6. Conclusion 

 

     In a parametric convex vector optimization 

problem, stability and sensitivity analysis are critical. 

This stems from the various applications of these 

problems. In this study, we address a parametric vector 

optimization problem over a convex cone P. The P-

Stability notion sets from first through fourth kind for 

such optimization problems are introduced together 

with their associated notion maps. Among qualitative 

mathematical properties, uniqueness, uniform 
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compactness, and sequential semi-continuity are 

checked and proved for the notion maps corresponding 

to the P-stability notion sets of the first, third, and 

fourth kinds. Moreover, the perturbation maps 

accompanying the stability notion maps are defined, 

and the uniqueness and sequential semi-continuity are 

shown wherever achievable. For future work, the same 

arguments might be extended to further stability maps 

with higher orders. Besides, the quantitative properties 

of stability and perturbation maps can be studied for 

generalized conic optimization problems. 
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