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Abstract 

Mountains and their usefulness for the terrestrial Globe are mentioned several times in the Quran. Especially, 

the Qur'an presents the mountains as pegs or stakes which ensure the equilibrium of the whole of the Globe 

and therefore its stability but it has not been reported anywhere in the Quran how they function to 

accomplish this extremely important role. According to the Quran, the role that mountains play as pegs 

should normally be miraculous, incredible, and even very great, far more important than the small role of 

stopping the movement of tectonic plates. If the mountains are made like pegs, it is to ensure the equilibrium 

of the whole of the Earth and probably not to stop parts of the Earth such in the theory of continental drift. 

The aim of this paper is to study the effect of Mountains as gravitational stabilizers pegs for the Earth's 

rotation motion. The physical system studied is a single Mountain selected among all the Mountains that 

exist on the globe. The application of Newtonian mechanic’s laws to the forces that act on the Mountains 

system leads us to find out the equation of the Earth’s rotation motion. As a result, the angular acceleration 

oscillates with an amplitude of  3.95  10−21 rad.s−2. The analyses of the obtained results show that a single 

Mountain, if it existed alone, will destabilize the Earth and hide all the Tide’s effects on the Earth’s rotation 

motion. The biggest obstacle that prevents us from seeing this phenomenon is the fact that the Mountains 

that exist on Earth are numerous, symmetrically distributed with respect to each other. There are several 

thousands of Mountains on Earth and the terrestrial crust also contains many other irregularities. Thus, the 

effects of Mountains and their antipode anomalies on the Earth's motion cancel out each other, achieving its 

stability. If Mountains didn’t exist, the Earth would have vibrated from the initial instant of its existence and 

thus derived from its trajectory long time ago. As a result, the Mountains are for the Earth what are balancing 

corrective masses for rotating bodies like the wheel: They stabilize the Earth indeed. Without Mountains, the 

Earth’s vibration can cause catastrophic failure, as well as noise and discomfort. Thus, the Mountains are 

gravitational pegs that stabilize the Earth’s rotation motion while orbiting along its helical trajectory 

following the Sun’s motion on its orbit. 
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1. Introduction  

The rotation of the Earth is a fascinating subject which 

has retained the interest of geologists, geodesists, 

geophysicists and astronauts for a long time. The main 

works on the Earth’s rotation are focusing on the 

study of its angular speed change, determining the 

change in the length of the day (LOD), the flattening 

and the inclination of Earth’s spin axis with respect to 

the plane of the ecliptic. The most studied factors that 

have an effect on the Earth’s rotation movement are 

both oceanic and solid tides, atmospheric wind, solar 

wind, ocean movements, plate motion, earthquakes 

and all anthropic activities that cause the Earth’s 

global climate change. Studies of the effects of these 

factors on the Earth’s rotation are often based on 

determining the change in the moment of inertia of 

the Earth and the conservation of angular momentum 

theorem. The Earth rotation is described by 

Eulere−Liouville equation, where the moment of 

inertia tensor plays a key role 1. Mass redistribution 

within the Earth will result in changes in the inertia 

tensor, which contributes to the Earth's rotation 

motion change. Studying the physical mechanisms 

related to the Earth's rotation can help us better 

understand not only the complicated geophysical 

phenomena that govern the Earth's rotation motion in 

order to take preventive actions for their control them 

but also research advancements.  

It’s known that Mountains cover nearly 27 per cent of 

the Earth’s land mass and are home to 15% of the 

world´s population. Among their usual known roles, the 

Mountains are reservoirs of fresh water, shelter 

forests and protect the Earth’s crust from constant 

earthquake. It is also known that Mountains like pegs 

have deep roots under the surface of the ground and 

play an important role in stabilizing the Earth’s crust. 

To our knowledge, there are no bibliographic 

resources on the roles that the Mountains play 

concerning the stability of the Earth’s rotation motion 

from the start of their existence 4.5 billion years ago. 

The existence of the Mountains is to perform some 

functions which concern the Earth itself, and may be 

the whole of the solar system in the universe. In this 

regard, one might questions: What is the role of the 

Mountains that exist on the Earth with respect to the 

stability of our planet and why didn’t the Earth exist 

without Mountains? Studying how and when 

Mountains were formed and what their shapes look 

like is very important and since they already exist, it is 

also interesting to find out the purpose of their 

existence. In addition to the tectonic plate 

stabilization, what are the other functions that 

Mountains perform on Earth? 

     Mountains appear motionless, but in reality, they 

are not because the Earth revolves around both itself 

and the Sun. Indeed, the Mountains that exist at 

Globe’s Equator are moving at the tangential speed 

roughly equal to 1672.5 km/h due to the Earth’s 

rotation movement. Mountains located between the 

Equator and the Earth’s rotation axis move with 

different speeds but that does not exceed that value in 

all positions. Indeed, Mountains appear as if they are 

motionless for us but in reality, they move at the speed 

of clouds and supersonic airplanes. All these 

movements are governed as a first approximation by 

the classical Mechanics of Material point laws to which 

we will limit ourselves in this work. The purpose of this 

paper is to show that Mountains are gravitational pegs 

that stabilize the Earth’s rotation motion. We will show 

in the case of a physical system formed by a Mountain, 

Moon and Earth that an angular momentum balance 

makes it possible to explain the role that Mountains 

play in stabilizing the planet Earth motion and how 

they stabilize it.  

 

2. The theoretical background on the Mountains 

     In 1865, Delaunay had published an article on "The 

effect of the Tides on the Earth's rotation" in which he 

showed that the cause of the deceleration of the 

Earth's rotation movement was the friction of the 

Tides on the oceanic crust 2. The hypothesis of Tides 

braking the Earth’s rotation had been also mentioned 

by Kant in 1754 more than a century long before 

Delaunay 3. According to Kant, due to the 

irregularities of the seabed, mainly islands and cliffs, 

Tides exert a slowing friction on the Earth's rotation. 
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In 1912, Wegener posed the hypothesis of "Continental 

Drift" 4. In 1915, he published "The Origin of 

Continents and Oceans" 5. He exhibited a theory 

based on a new conception of the terrestrial globe: the 

continents, floating on a more fluid layer, are mobile 

on the surface of the globe. Once united in a 

supercontinent, the continental masses have been 

separated by the interplay of fractures that become 

oceans, the continents will set adrift to their current 

position; the Mountains are thus formed. In their 

books published between 1920 and 1970, Wegener et 

al. relied on a thin, dense ocean crust and less dense 

Mountains with deep roots to support the theory of 

continental drift. They further postulated the 

permanence of the continental drift movement, the 

place of which is not permanently fixed, but this 

phenomenon occurs over a geological time scale. 

Nowadays, plate tectonics models, geophysical and 

GPS satellites measurements appear as if they confirm 

Wegener's theory. 

     Modern earth sciences have proven that mountains 

have deep roots under the surface of the ground and 

that these roots can reach several times their 

elevations above the surface of the ground. So the 

suitable word to describe mountains on the basis of 

this data is the word ‘peg’, since most of a properly set 

peg is hidden under the surface of the ground. The 

theory of Mountains having deep roots was introduced 

in the second half of the nineteenth century [6]. The 

Airy and Pratt models of isostasy are commonly used 

to explain the formation of the Mountains [7. Airy 

model of isostasy tells us that Mountains have deep 

roots under the surface of the ground and that these 

roots can reach several times their elevations above 

the surface of the ground. Moreover, the modern 

theory of plate tectonics also states that Mountains 

have deep roots and play an important role in 

stabilizing the crust of the Earth [8] because they 

interfere with the shaking of the Earth. This is also 

found in many other bibliographic sources [9,10]. Airy 

estimated that the density of the crust is largely the 

same in all continental regions and therefore 

concluded that topographically, higher regions must 

be compensated by crustal roots at depth. Seismic 

studies in many Mountain belts show that most 

regions of high surface elevation are indeed 

compensated by significant roots at depth 11,12. So 

many bibliographic resources rightly talking about 

Mountain roots give balance and stability to Earth’s 

lithosphere. 

     Regarding the naming of Mountain roots by pegs, it 

is known that a bar or a stick, or generally any other 

object, whatever its shape and nature, cannot be called 

a peg unless it really plays the role of a peg, if it 

significantly contributes to prevent an object such as 

a tent from falling. It’s useless to call an object a peg if 

it is not used to tie an animal or stabilize another 

object. 

 

3. The force’s gradient of the Sun and the Moon 

effect on a mass  situated on the Earth's surface. 

     We will consider a simplified model based on 

Newtonian Mechanics. We leave the complex 

calculations to be done later. Our goal here is to 

vulgarize, for the first time, the phenomenon of 

Mountains balancing the Earth’s rotation motion. To 

do this, we assume that the Earth as a solid and 

homogeneous sphere and the mass of the atmosphere 

is meaningless. We note M, the mass of the Earth, m, 

the mass of the Moon and r is the distance between 

the Earth and the Moon center to center. 

     The Earth-Moon system is kept in the dynamical 

equilibrium by two forces. One of them is the 

centripetal force, and the second one is the force of 

gravitational attraction between the Earth and the 

Moon. Moon and Earth are locked in the rotational 

motion. The Moon revolves around the Earth in an 

almost circular orbit, so we shall assume that the orbit 

is circular. In such motion, the mutual gravitational 

attraction is balanced by the centripetal force. 

Dynamical equilibrium of the Earth-Moon system will 

require that the sum of all centripetal and attraction 

forces should be zero. According to Newton's Second 

Law of motion, the equation of the Moon’s orbital 

movement is written 
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2

2 M

r

mG

r

mv
=          (eq. 1) 

where G is the universal gravitational constant. 

The Moon’s tangential velocity can be replaced by its 

angular velocity,  , with the relation v = r, so eq. 1 

becomes: 

                        Cste
23

=r       (eq. 2) 

 

The equation 2 is the Kepler's Third Law of planetary 

motion which means that if the angular velocity  

changes due, for example, to a change in the moment 

of inertia of the terrestrial globe, then the radius r of 

the orbit must also change to adapt to the new value 

13. Any radius r leads to a stable orbit, the angular 

velocity  of the Moon, then adjust appropriately and 

vice versa. There would thus be the possibility of orbits 

of any angular frequency. The Moon would normally 

occupy orbits of any r radius. If r increases, the Moon 

moves away from Earth; but if r decreases, the Moon 

comes closer to the Earth. During the distance of the 

Moon or its approach towards the Earth, the 

frequency of revolution passes through an infinite 

number of values. If, moreover, r varies between two 

extreme amplitudes, then the Moon can oscillate 

around an equilibrium position. This oscillation will 

destabilize at first the Earth-Moon system. 

 

The force of attraction which Sun exerts on a mass  

located on the Earth’s surface is: 

 

                            μ
M

F
2

S

S

S
r

G=  

For the Moon: 

                            μF
2L

r

m
G=  

and for the Earth: 

                            μ

R

M
F

2L

G=  

 

where,  

MS = 1,989  1030 kg is the Sun’s mass, 

M = 5,972  1024 kg is the Earth’s mass, 

m = 7,34  1022 kg is the Moon’s mass, 

rs  = 1,5  1011 m is the distance between the Earth and 

the Sun, 

r = 3,8440 5  108 m is the distance between the Earth 

and the Moon,  

R = 6,371  103 m is the Earth’s radius, and  

G = 6,674 8  10−11 m3kg−1s−2 is the gravitational 

constant. 

 

The ratio of the Sun’s force and the Earth’s force is as 

follows: 
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The ratio of the Moon’s force and the Earth’s force  
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     The above values obtained for these two ratios 

show that the gravitational effect of the Sun and the 

Moon on the mass  is about 1/1000 and 1/1000000 

that of the Earth, respectively even if it is indeed the 

Earth that interacts gravitationally with the objects on 

its surface, such the Mountains more than the Sun and 

the Moon. But since each Mountain has a certain 

altitude, it is appropriate to make an analogy between 

ocean Tides and Mountains even though they are very 

high than Tides. The effect of the altitude of a 

Mountain is like the Tidal effect, is in 1/R3 due to the 

gradient (difference in strength) in gravitational force 

and not in 1/R² due to Newton force, because the mass 

of a Mountain is distributed in altitude from the root 

to the summit. In fact, the force acting on the 

Mountains depends on the gradient of the 

gravitational field. Mountains undergo the gradient’s 

action of the Moon’s gravitational field across the 

diameter of the Earth. Hence, the use of the force’s 

gradient is justified by the altitudes of Mountains and 

their roots which are very high than those of the Tides. 
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The Sun’s force gradient is obtained by deriving the 

force FS from the radial distance, we have 

                   
TS

3

TS

S

SS
μdR

R

M2
dF

G
f −==  

 

The same derivation for the forces of the Moon and 

the Earth, the ratio of the force’s gradients of the Sun 

and the Earth becomes: 
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and the ratio of the force’s gradients of the Moon and 

the Earth becomes: 

: 
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As we can see, the two ratios are of the order of 

1/100.000.000.  

     The Sun and the Moon effects on a terrestrial 

Mountain are each almost 100 million times smaller 

than the Earth's effect on the same Mountain. The 

force gradients suggest that there isn’t almost any 

interaction between the terrestrial Mountains on the 

one hand, and the Moon and the Sun, on the other 

hand. In addition, the ratio of the gradients of the 

Moon and the Sun forces is, 

                    6,2
M
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     As we see, the differential force due to the Moon is 

approximately 2.6 times greater than the differential 

force due to the Sun. Though the Moon and the Sun 

effects are extremely small in comparison to the 

Earth’s one, the Moon still has an effect on the 

terrestrial Mountains and has more influence on them, 

than the Sun. To understand why such a small force 

has such a strong influence on the Earth’s dynamics, it 

is enough to recall that the pressure force that exerts 

a mountain on Earth is very important because the air 

that it occupies is very vast 14. So, we will limit 

ourselves in the following to the effect of the Moon’s 

force on the Mountains. 

 

4. The moment of the force that exerts the 

Mountains on the Earth 

     The Mountains that exist on our planet are 

essentially to maintain its dynamic equilibrium.  To 

demonstrate how the Mountains stabilize the Earth’s 

motion, the easiest way is to apply the laws of the 

classical Mechanics to the Earth-Moon-Mountain 

physical system. The components of the vector sum of 

forces acting on the rotating Mountain system in its 

dynamic equilibrium will allow us to establish the 

moment of the force that acts on it, with respect to 

the center of the Earth. To start our study on the 

interaction between the Mountains and the Earth, we 

need to select a single Mountain among all the 

Mountains that exist on Earth. To do this, imagine that 

all the Mountains that exist on Earth have been moved 

except one big Mountain, by some work, and that the 

displaced Mountains have been used to fill the 

irregularities that exist into the terrestrial crust such 

us hollows, valleys, anomalies and all the defects. This 

massive work, which is not impossible, will cause the 

Earth’s surface to become a smooth one as a billiard 

ball and the water of oceans and seas to rise to the 

Earth’s surface to form a single, uniform layer of water 

of a defined thickness. This layer of water would thus 

make the surface of the planet Earth uniform with a 

lump. The result of this massive displacement of the 

Mountains, except one of them, would make the Earth 

a perfect spherical object rotating on its rotation's axis 

having only one lump which is the unmoved Mountain. 

This "Earth" will therefore “limp” in the gravitational 

field! Next, we will study the unmoved Mountain which 

we will consider as our physical system. The chosen 

Mountains are the Himalaya Mountains range.  

     Sizes and masses of the Earth and the Moon are 

extraordinarily much greater than those of the 

Mountain, the distances between them is also 
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enormously very large. So we can consider the 

Mountain as a material point located on the Earth’s 

surface that is because the Mountain range is fixed to 

the Earth's crust by its roots which can reach several 

times their altitudes above the surface of the ground. 

Let  denote the mass of this material point. 

Therefore, the Moon exerts a gravitational force on  

and according to Newton's third law of motion; it is 

finally the Earth which undergoes the Moon’s force by 

means of the Mountains. Let us assume, to simplify 

this hypothesis, that, without this action of the Moon, 

the Mountain does not undergo any lunar force of 

attraction and therefore neither does the Earth. The 

Moon is further assumed to be on the celestial 

Equator; by virtue of the lunar action and the Mountain 

is constantly attracted by the Moon. The Mountain 

assimilated to a material point turns on a circular 

trajectory with the same center as the Earth’s globe. 

The Mountain’s rotation direction on its supposedly 

circular trajectory is of course in the same orientation 

as that of the Earth and the Moon rotations. Designate 

by T, the Earth’s center and by L, the Moon’s center 

(Fig. 1). Suppose for the moment that the distance r 

between the Earth and the Moon center to center is 

constant, R, the Earth’s radius, and d, the distance 

from the Moon to the Mountain center to center also. 

The distance d between the Mountain and the Moon 

varies continuously due to the Earth’s rotation motion. 

Figure 1: The Mountain, Earth and Moon system: Fr and 

F are forces acting on the mass  of the Mountains 

located on the surface of the Earth, T and L represent 

Earth and Moon gravity centers respectively. The 

point C is the barycenter of the Earth-Moon system. 

      For the moment, we question what are the forces 

acting on the mass  located on the surface of the 

Earth. It is known that stability of the Earth-Moon 

system requires that the sum of all centripetal and 

attraction forces should be zero. While this statement 

is true for the centers of the Earth and Moon, the 

balance does not occur in every point of the Earth.  

Ignoring the altitude of the Mountains, the centripetal 

force Fω is the same for the every point on the Earth 

and is equal to the force of attraction which the Moon 

exerts on the mass  as if it is located at the center of 

the Earth;  

                             
2gω

μ
FF

r

m
G==  

 

The Moon’s attraction force acting on the mass  

located on the Earth’s surface (Fig. 1) is,  

                              
2

μ
F

d

m
G

r
=  

 

It is the sum of the two forces of which we have just 

given the expression that constitutes the action of the 

Moon on the mass  of the Mountains and their roots. 

In this case, the Coriolis force does not exist because 

the Mountains are motionless on the Earth’s surface. 

Projection of these forces on the tangential direction 

to the Earth’s surface yield,  

 

                          )sin(
μ

F
2ωt



r

m
G=  

And 

                       ( ) += sin
μ

F
2rt

d

m
G  

 

where  is zenith angle of the Moon.  

Summing up these forces, we arrive at the Mountain’s 

force Ft   

 

     )
)sin()sin(

μ(FFF
22ωtrtt rd
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+

=−=      (eq. 3) 
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From the triangle T, , L we can find:  

 

 
rrd

)sin()sin()sin(  +
=

−−
=  

 

Therefore in eq. 3, sin( + α) can be expressed by 

sin() and 

 

      




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Gm                              (eq. 4) 

 

Again, using the triangle T, , L the distance d is 

defined as  

     )cos(
222

RrRrd −+=  

 

that can also be written in the form 
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2

2
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Since the R/r ratio for the Moon is very small number 

(1/60,33). Developing the above equation into a power 

series up to first order considering that the R/r ratio 

for the moon is very small number (R/r  1/60,33 = 

0,01657) then, the terms of the higher order R2/r2  

1/3600 will be neglected, we arrive at  
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Introducing this result into the tangential component 

of the force acting on the Mountains, eq. 4 above 

yields to: 

                     )2sin(

2

3R
μF

3t


r

Gm=       (eq. 5) 

 

Repeating similar approach for the forces directed 

along the normal direction to the surface of the earth, 

we arrive at,  

     )
3

1
)((cos

μR
3FFF

2

3ωnrnn
−=−= 

r

Gm
        (eq. 6) 

The sum of the moments of these two components 

with respect to the center of the Earth is: 

            )2sin(
μR

2

3

3

2



r

Gm
=                               (eq. 7) 

The radial part has no momentum, so it does not 

deform the Earth. 

      Graph 1 shows the moment of the force, , acting 

on the mass  as a function of time. As we see, the 

norm of the moment  varies as a function of time. The 

remarkable fact is not only in the variation of the norm 

of , but rather in the fact that its orientation also 

changes cyclically with respect to the orientation of 

the Earth’s rotation axis. Indeed, its sign is positive for 

the first quarter of a period ranging from 0 to /2 and 

negative for the second quarter of a period between 

/2 and  and so on. During the first quarter of a 

period, the sign of  is positive, which means that this 

dynamic moment of the force tends to tilt the Earth 

towards the Moon, and for the second quarter of a 

period, the sign of  is negative and the orientation of 

 is reversed, thus the moment tends to tilt the Earth 

away from the Moon. 

      In general, if the sign of  is positive, then the 

moment of the force tends to tilt the planet Earth 

towards the Moon, but if it sign is negative, it tends to 

tilt the Earth away from the Moon. The tangential 

speed of Mountains located at the Equator whose 

center of mass is at 6371 km from the center of the 

Earth, is  1672,5 km/h. This value shows that the 

angular momentum of the Mountains is very big. The 

variation in the moment of the force vector is enough 

to cause the Earth's movement to cyclically move from 

right to left and vice versa due to the Mountains’ range 

and the cyclically change of its orientation. Thus, the 

Mountains’ range destabilizes the Earth’s rotation 

motion. The moment of the force tends to modify 

instantaneously the angular momentum of the mass  

by dragging it towards the Moon or in the opposite 

direction, but since the Mountain’s root is strongly 

fixed to the Earth, it is therefore the latter that 

undergoes its effect. 
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     The moment of the pressure force that the 

Himalayas’ Mountains range exerts on the Himalayas 

region cyclically oscillates and its sign changes. If the 

sign of the force’s moment is positive, i.e. for the angle 

 varying from 0 to /2 or  to 3/2 and so on, then it 

tends to decelerate the Earth’s rotation motion. 

Howover, if its sign is negative, i.e. for  varying from 

/2 to  and 3/2 to 2 then it tends to accelerate the 

Earth’s rotation. The fact that the moment varies and 

its sign changes cyclically around 24 hours is a proof 

that the gravitational force destabilizes the Earth’s 

motion due to the Himalayan Mountains range alone. 

Recently, Na et al. reported that the global secular 

oceanic Tides exert on the Earth a decelerating torque 

of about −5.14  1016 Nm, the secular atmospheric Tide 

exerts an accelerating torque of + 1.55  1015 Nm and 

the solid Earth Tide exerts a decelerating torque of 

−4.94  1015 Nm 15. On one side, a Tide can be in the 

form of a flat layer with a circular base 1 meter thick 

and 675 km radius 2. The surface of the oceanic Tides 

is about 2  1.43  1012 m2. The factor 2 used here is to 

take into account the two opposed tidal bulges’ areas. 

The moment of the pressure force that ocean Tides 

can exert on the Earth is  1.8  104 Pam (where 1 Pa = 

1N/m2). And on the other side, the moment of the 

force amplitude that the Himalaya Mountains range 

exerts on the Himalayas’ region is  4.92  1019 Nm. The 

total area of the Himalayas amounts to about 5.95  

1011 m2 16. Though, the corresponding moment of the 

pressure force is 1.2  108 Pam. Even if the surfaces 

of the Himalayas Mountains range and the Tides are of 

the same order, the pressure force that the area 

occupied by the Himalayas region exerts on the Earth 

is at less three orders of magnitude greater than those 

of oceanic and atmospheric Tides. As we see, if there 

were only one big Mountain on Earth like the 

Himalayas, then the effect of the Tides can be 

neglected, compared to its effect. These suggest that 

the Mountains have a role to play in the stability of the 

Earth’s rotation motion. 

 

 
Graph 1: The norm of the moment of force  due to the 

Moon acting on the Himalaya Mountains range as a 

function of time for a period of 24 hours. 

 

5. The effect of Mountains on the Earth’s rotation 

motion 

     Applying the fundamental principle of dynamics 

(=I), the differential equation of this rotational 

motion is 

 

           )2sin(
μR

2

3

dt

dω

3

2



Ir

Gm
−=                        (eq. 8) 

where  is the angular speed of the Earth, and I the 

moment of inertia of the Earth’s mass with respect to 

one of these diameters.  

Based on the data published by Liu & al. 17, and since 

I/MR2   0,33 the Moment of inertia of the Earth and 

the mass  is: 

                       
22

μR0,33MRI +=                    (eq. 9) 

The Himalaya Mountains are a Mountain range having 

some of the planet's highest peaks, including the 

highest, which is Mount Everest. The Himalayas abut 

or cross five countries: Bhutan, India, Nepal, China, and 

Pakistan (see Fig 2).  
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Figure 2: Photo of the Himalaya Mountains region 

taken from Google Earth map on 21 Sept. 2021, looking 

like a wheel balancing corrective mass. 

 

     Over 100 peaks exceeding 7200 m in elevation lie in 

the Himalayas. The length of the Himalayas Mountain 

range is 2400 km 16,18. The range varies in width 

from 200 to 400 km. Their total area amounts to 

about 600000 km2. Mount Everest, the height of which 

is  8849 m above ground, is a pyramidal pick and has 

deep root that can reach fourteen times its elevation 

above the surface of the ground. If we assume that the 

Mountains of this range have hexagonal pyramid 

shapes of (√3/2)  a2  h volume where the a is the side 

of the base of the hexagonal pyramid and h, its height, 

and the roots of these Mountains as pegs with inverted 

volume conical shapes of (1/3)πr2h volume where r is 

the radius of the base of the cone and h its height; if 

the average density of the Mountains is 5500 kg.m−3, 

then the estimated mass of the range including the 

mountain roots well be   9,35  1018 kg. Otherwise, 

the mass of the Earth is always greater than that of 

any Mountains (/M = 9,35  1018 kg / 5,972  1024 kg  

1/1000000). So one can make approximation M− ≈ M. 

Then we have, 

                              
2

MR
3

1
I  

 

If we substitute I by its expression in the previous 

differential equation, we have 

 

            
3

)2sin(μ

2

9

dt

dω

r
M

Gm 
−=                         (eq. 10) 

Note further that, by considering the Moon’s rotation 

motion around the Earth’s center, we have 

                         
MT

r
G

L

2

324
=  

where: TL is the Moon’s period around the Earth. 

If we substitute G by its expression in eq. 10, it will 

come 

              )2sin(
μ

18
dt

dω

2

2




MM

m

T
L

−=                  (eq. 11) 

 

=t=(2/24h)t, where =2/24h and t the time, and 

TL=27,32 days. 

By simple integration of eq. 11, the expression of the 

angular speed change of the Earth’s rotation is 

                     )2cos(
μ

9ω
2

2







MM

m

T
L

=              (eq. 12) 

 

     Then, the angular velocity of the Earth’s rotation is 

(t)= (t0) + .  

As we see, the effect of Mountain’s forces due to the 

Moon on the Earth’s rotation motion is to increase or 

decrease instantaneously the angular velocity of the 

Earth by a quantity equal to . This variation in 

Earth’s rotation angular speed will destabilize the 

Earth’s rotation motion as it is shown.  

Graph 2 shows the angular acceleration of the Earth’s 

rotation motion and Graph 3 its angular velocity 

change () as a function of time.
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Graph 2 : The angular acceleration of the Earth's 

rotation due to the Moon forces on the Himalaya 

Mountains range. The rate d/dt changes sign four 

times by day period. The Himalaya Mountains effect (if 

it existed alone on the surface of the Earth) would be 

to accelerate and decelerate the Earth’s rotation 

motion twice a day which would cause destabilization 

of the Earth and consequently the destabilization of 

the Moon (1 cycle = 1 day / 4). 

 

 
Graph 3 : The angular velocity change of Earth’s 

rotation motion as a function of time due to the Moon 

forces on the Himalaya Mountains range. The angular 

speed of the Earth’s rotation varies cyclically: it 

decreases during the decelerating and increases in the 

accelerating cycles 

 

     These two Graphs correspond to the moment of 

force presented in Graph 1. Sinusoidal curves on 

Graphs 2 and 3 show that if the sign of the angular 

acceleration (d/dt: the cause) is negative 

corresponding to the decelerating cycles on Graph 2, 

then the angular speed change (: the effect) 

decreases. But, if the sign of the angular acceleration 

is positive corresponding to the accelerating cycles, 

then the angular speed change increases. The angular 

acceleration of the Earth's rotation, due to a Himalaya 

Mountains range, changes sign four times each day 

period and the force of the Mountains range (as they 

exist alone on the surface of the Earth), due to the 

Moon, would be to accelerate and decelerate the 

Earth’s rotation movement twice a day which would 

cause the destabilization of its dynamical equilibrium. 

To give a little more detail, the forces of the Mountains 

range will increase the brake’s strength of the Earth’s 

rotation movement during the first one-eighth of a 

daily period from 0 until t = T/8. At this instant, the 

angular acceleration reaches its minimum, which is 

−6,1410−21 rad.s−2. During this decelerating cycle, the 

angular velocity change progressively decreases 

towards its minimum, then the forces of the Mountain 

range exerted on the Earth will diminish the braking of 

the Earth during the second one-eighth of a period 

until t = T/4. At this instant, the angular acceleration is 

zero and during this decreased brake’s cycle, the 

angular velocity change continues to progressively 

decrease until reaching its minimum which is equal to 

− 4,22  10−17 rad.s−1. The force of the Mountains 

reverse the sign of the angular acceleration of the 

Earth's rotation motion to become positive and 

gradually increase it during the third one-eighth until 

t = 3T/8. At this instant, it reaches its maximum which 

is equal to + 6,14  10−21 rad.s−2. During this increased 

acceleration cycle, the angular velocity change 

progressively increases towards its maximum; then 

the forces of the Mountain will cause the decrease of 

the angular acceleration during the fourth one-eighth 

of a daily period until t = T/2. At this instant, the 

angular acceleration is zero and during this decreased 

acceleration cycle, the angular acceleration change 

progressively increases until reaching its maximum 

which is + 4,22  10−17 rad.s−1 and so on. 

Similar decelerating and accelerating cycles occurs 

during the proper Earth’s rotation motion while 

“swimming” in the space along its helical trajectory 
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following the Sun’s movement and depend also on the 

position of the Moon while orbiting along its helical 

trajectory following the Earth’s movement. The fact 

that the angular speed of the Earth’s rotation 

oscillates between two extremes − values as small as 

they are − will disturb the dynamic equilibrium of the 

Earth’s rotational leading to its destabilization. 

 

5.1. Himalaya Mountains, if it existed alone, can 

induce change in the length of the day 

     It is known that the forces generated by the tidal 

bulges cause a gradual decelerating of the Earth’s 

rotation motion, and thus produce a noticeable 

apparent acceleration in the orbital mean motion of 

the Moon 2. One of the big differences between the 

tidal wave and a Mountain’s motion is that the tidal 

wave always remains pointed towards a direction 

defined by the gravitational forces orientations of the 

Moon and the Sun, while the Mountain rotates with the 

Earth because it is fixed to it. In the hypothetic case of 

the existence of a Mountain alone like the Himalaya 

Mountains range, the angular speed of the Earth’s 

rotation varies. The amount by which the Earth’s 

angular speed is decreased during the decelerating 

cycles and increased in the accelerating one is, 

                 
117

rad.s108.44δω
−−

=  

 

where the minus sign (−) is used for the decelerating 

cycles and the plus sign (+) for the accelerating cycles. 

Moreover, if we consider the variation of the angular 

speed change as being roughly linear as a function of 

time during the accelerating and decelerating cycles, 

then the positive and the negative short-term slopes 

that must correspond to its ascending and descending 

lines as a function of time would roughly equal the 

mean value of the angular acceleration of the Earth’s 

rotation motion which is: 

                  
221

rad.s1095.3
dt

dω −−
=  

 

which is comparable to the decelerating rate  

8.810−20 rad.s−2 due to magnetic braking of 

the Earth's rotation motion 19. The minus sign is 

used for decelerating Earth’s rotation and the plus 

sign for accelerating cycle. This deceleration is small, 

but the Earth’s mass is  5.97  1024 kg. A brake that 

achieves this deceleration would release  500 GW, the 

equivalent of 514 GW nuclear power plants. Tides, 

volcanos, Coriolis-generated ocean currents and winds 

cannot absorb this much power.  

On the other hand, because the norm of the angular 

momentum of the Earth system is conservative, then 

we have, 

                      constJωL ==                              (eq. 13) 

 

where  = 7.292115  10 −5 rads−1 20 is the mean Earth 

rotation rate. 

It follows that a change of the angular velocity of the 

Earth's rotation speed should inevitably cause a 

change of the moment of inertia J of the Earth and 

should cause a change of the length of the day 21: 

                  
τ

δτ

J

δJ

ω

δω
−=−=                               (eq. 14) 

 

where J and J are the moment of inertia and its 

change, and  and δ are the length of the day and its 

change respectively. Then, we have,  

                 



 −=                                            (eq. 15) 

 

Therefore, the change of the length of the day, due to 

the angular acceleration of the Earth's rotation 

movement should reach, 

            
12

5

17

1016.1
rad/s107.29

rad/s108.44

τ

δτ −

−

−





=  

 

Here 1 cycle = T/4 and  = 8.64  104 s is the length of 

a standard day.   

Then, the length of the Earth day will increases by the 

rate of  25 ns per decelerating cycle and decreases by 

25 ns per accelerating cycle due to the action of 

Mountain’s pressure forces on the Himalayas area on 

the Earth and so on. The obtained value is comparable 

to the LOD change rate induced by tropospheric and 
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stratospheric wind contributions to Earth’s variable 

rotation of 356 s/yr 22 and 358 s/yr ocean tides 

and the Anelasticity of the Mantel 23 which is equal 

to  243.6 ns/cycle. A cyclically increase and decrease 

in the Earth's rotation speed therefore leads to a 

periodically increase and decrease in the angular 

momentum of lunar revolution movement. 

One can imagine that the Moon is fixed and that the 

Earth spins like a wheel from west to east, in its diurnal 

rotation. A Mountain on the Earth’s surface, on 

approaching the Moon’s meridian, is, as it were, laid 

hold off by the Moon, forms a kind of handle by which 

the earth is pulled more quickly round. But when the 

meridian is passed the pull of the Moon on the 

Mountain would be in the opposite direction, it now 

tends to diminish the velocity of rotation as much as it 

previously augmented it, and thus the action of all 

fixed bodies on the Earth’s surface is neutralized 24.  

See Fig. 3. 

 

 

Figure 3: On the right: The Moon pulls on the Mountain 

accelerating the Earth’s rotation motion, and on the 

left, the Moon pulls on the Mountain decelerating the 

Earth’s rotation. 

     Nevertheless, this is not quite true because there 

are two different findings. Such reasoning without any 

supporting calculation suggests that there are only 

one acceleration cycle and one braking cycle of 12 

hours each per day. But the calculation above shows 

that there are two accelerating and two decelerating 

cycles by day and there are therefore two findings. 

The first one is that the sum of the durations by which 

the LOD is increased and decreased during two 

successive accelerating and decelerating cycles or vice 

versa neutralize each other and the length of the day 

remains approximately the same. The second is that 

the Earth's rotation is accelerated during accelerating 

cycles and decelerated during braking cycles. The 

acceleration or deceleration of the Earth’s rotation is 

an instantaneous and irreversible process. If the 

Earth's rotation is destabilized, then it is destabilized 

and this destabilization is irreversible us one cannot go 

backwards. That is to say that the acceleration or 

equally the deceleration of the Earth’s rotation occurs 

instantly and it is also transferred instantly from the 

Earth to the Moon according to the angular 

momentum conservation theorem. If the angular 

speed of the Earth is instantly decreased by a certain 

amount, then it is decreased by that amount and this 

decrease is irreversible, but if the angular speed of the 

Earth is increased instantaneously, then it is increased. 

The instantaneous decrease or increase in the speed 

of rotation of the Earth, if it has occurred, is then 

irreversible. These successive accelerating and 

decelerating movements are the cause that pushes 

the Earth to vibrate. Consequently, a single Mountain 

destabilizes the Earth’s rotation motion. We are 

therefore starting to see the role that Mountains play 

in the Earth’s stability. If there were only one big 

Mountain, then several measuring instruments such as 

GPS satellites, clocks and gravimeters will be affected 

by the destabilization of the Earth’s rotation motion 

http://www.emiratesscholar.com/


 

Emirati Journal of Space Science 

Vol 1 Issue 1 (2023) 4 – 25  

DOI: 10.54878/EJSS.287  

 

Available at www.emiratesscholar.com 

 

 

Emirati Journal of Space Science 

Emirates Scholar  
16 

5.2. The Himalaya Mountains range, if it existed 

alone, can induce change in the distance between 

the Earth and the Moon 

     Mountains are fixed on the surface of the Earth 

unlike the Moon which revolves around itself while 

orbiting like “swimming” along its helical path 

following the Earth’s movement around the Sun and 

also contrary to the tidal waves that propagate across 

the oceans and the earth’s crust. From this point of 

view, the Moon's interaction with the Tides is quite 

different from what the Moon's interaction with the 

Earth's Mountains should normally be. If we assume 

that the Earth-Moon system is isolated, then its 

angular momentum is conserved (eq. 13). Therefore, 

as the angular momentum of the Earth's rotation on 

itself varies, i.e. decreases and increases cyclically, due 

to the forces of the Himalaya Mountains range, the 

Moon's orbital angular momentum also vary, that is to 

say, when the angular speed of the Earth's axial 

rotation varies between its two extremes while 

increasing and decreasing continuously, the angular 

speed of “orbital” rotation of the Moon increases and 

decreases cyclically following the Earth’s angular 

velocity variations and, therefore, its angular 

momentum. The distance from the Earth to the Moon 

should normally vary causing the destabilization of the 

Earth-Moon system. 

     In order to demonstrate this imminent 

dependence, let us consider the simple case of the 

Earth's axial rotation. Suppose the Earth-Moon system 

as isolated and denote by C, its babycenter, T and L, the 

centers of gravity of the Earth and the Moon 

considered solid (see Fig. 1). The barycenter, due to 

the difference of the mass of Earth and Moon, is 

located approximately 3/4 of the Earth’s radius from 

the Earth center T. In the inertial frame of reference, 

the rotational motion around the barycenter is 

somewhat different from the motion described by a 

wheel 14. Earth and Moon revolves around the 

common center without rotation through a simple 

translation. For the system Earth-Moon to be in 

equilibrium, the vector sum of the two momentums of 

all forces should be zero. The system being isolated, 

then the angular momentum of the Earth-Moon 

system is constant. The sum of the angular 

momentums vectors of the Earth and the Moon in the 

Galilean reference frame centered in C (see Fig. 1) are 

written then, 

                  Ωω

M
1

2
JIr

m

m
L ++

+

=                 (eq. 16) 

where  is the angular speed of revolution of the 

Moon witch is equal to its angular velocity of its proper 

rotation and I and J are the moments of inertia of the 

Earth and the Moon, respectively. The expressions of 

those moments are :  

               
2

MR
3

1
=I     and    

2

L
MR

5

2
=J  

 

To estimate rough orders of magnitude, we have 

furthermore m/M1/81,3 and  = 2,66  10−6 rad/s. It 

follows that 

mr2 = 2,88  1034 kg.m2.s-1;  

I = 5,87  1033 kg.m2.s-1; and   

J = 2,36  1029 kg.m2.s-1.  

As we see, the mass and angular momentum of the 

Earth, being larger than that of the Moon. Moreover, 

angular momentums of revolution are generally much 

more important than those of planet’s proper 

rotation. Then, we can approximate the expression of 

the angular momentum of the Earth-Moon system 

through by:  

                       ω
2

ImrL +=                             (eq. 17) 

 

Now we can determine the amplitudes by which the 

distance between the Earth and the Moon oscillates. 

One uses to determine it, because the angular 

momentum of the Earth-Moon system is constant, the 

derivation of angular momentum with respect to time 

gives zero,  

                   0
dt

dω

d

)d 2

=+


I
t

(r
m                        (eq. 18) 

 

Using again eq. 1 introduced above for the Moon’s 

physical system, we have, 
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G

2

2

M
=                              (eq. 19) 

 

By substituting eq. 19 in the eq. 18, we find 
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Using once again 
23

ΩM rG = from eq. 19 and after 

some arrangements, we obtain 
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Substitute each physical quantity by its value in eq. 20, 

we obtain, 

 

117

2

1018,2

ns/cycle/d100)(27,32
60

1
81,30,332

1

−−
=

=

s

dt

dr

r  

 

We finally get the following result: 

                   μm/cycle35,181
dt

d
=

r
 

The minus sign indicates that the Moon will approach 

the Earth by a rate of 181.35 m/cycle each 

accelerating cycle and the plus sign means that the 

Moon is moving away from the Earth by the same rate 

each decelerating cycle. 

Those kinds of oscillations phenomenon let us 

discover, for the first time, that Earth-Moon system 

vibrates along the TL axis passing by its barycenter C 

(see Fig. 1) with amplitude peak to peak of  181,35 m. 

The Earth and the Moon oscillate like two masses 

attached to an “invisible” spring. The short-term 

angular acceleration of the Earth’s rotation of our 

calculus is 3.95  10−21 rad.s−2. To compare, the 

long-term in angular acceleration of the Earth’s 

rotation motion that Groten et al. brought back is −4.5 

 10−22 rad.s−2 20. Stephenson et al. reported that 

the rate of change in the length of the day is +1.78 

ms.cy−1, due to the global deceleration of the Earth’s 

rotation with a long-term angular acceleration of  

−4.7  10−22 rad.s−2 of the Earth’s rotation motion 

25. The lunar Tide friction alone contributes by  −6.2 

 10−22 rad.s−2 at this value. There is, therefore, an 

acceleration of +1.6  10−22 rad.s−2 whose origin is 

unknown. This positive angular acceleration is 

probably due to a sustained decrease of the Earth’s 

moment of inertia change, such as the Earth’s 

flattening. Recently, Adhikari et al. reported that the 

position of Earth's spin axis drifted through the solid 

crust towards Labrador, Canada at an average speed 

of 10.5 ± 0.9 cm/yr during the 20th century 26, and 

this phenomenon can also induce a gyroscopic effect. 

According to our calculations, the quadratic mean 

value of the angular acceleration is  2.8 10−21 rad.s−1. 

Then, using the left term and the central term of eq. 

20 above, we found that the Moon is approaching the 

Earth at a rate of about 18,73 cm/yr due to the effect 

of the Himalaya Mountains range on the Earth and the 

day is getting shorter. However, this calculation is 

deficient. That’s why we must compare rates that are 

comparable. The long-term rate by which the Moon is 

moving away from the Earth due to all effects (ocean 

and solid Tides, atmospheric wind, etc.) acting on the 

Earth’s rotation motion is 3.82 cm/yr 27. The short-

term rate corresponding to this rate is 26 m/cycle. 

Then, the ratio of the amplitude by which the Moon 

vibrates due to the pressure forces of the Mountains 

on the Earth to the distance by which it is moving away 

from the Earth is 181.35 m/26 m  7, and the ratio 

of absolute values of the corresponding accelerations 

is 3.95  10−21 rad.s−2/4.7  10−22 rad.s−2  8,4. The value 

of the last ratio shows that the angular acceleration, 

due to the Himalayan Mountains range, is greater 

enough than the acceleration due to the all other 

effects acting on the Earth’s rotation. As we see, the 

effect of a single range of Mountains on the Earth’s 

rotation can hide the ocean Tide effect over a 

decelerating or an accelerating cycle or can dominate 

it, as shown on Graphs 4 and 5. 
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Graph 4 : The angular acceleration change  as a 

function of time due to the forces of the tidal friction 

and the Himalayan Mountain range on the Earth’s 

rotation. The Mountain’s effect cancels the Tide on the 

first half of the decelerating cycles, it is as if the tide 

does not exist; but the two effects add up during the 

second half of the decelerating cycle. 

 

 
Graph 5 − The angular acceleration change as a 

function of time due to the braking forces of the tidal 

friction and the Himalayan Mountain range on the 

Earth’s rotation. The effect of the Mountain is added 

to that of the Tide on the first half of the accelerating 

cycles, but the Mountains cancel the Tide during the 

second half of accelerating cycles, it is as if the Tide 

does not exist. 

 

     In fact, the slope of the dashed lines on Graphs 4 

and 5 is the angular deceleration, due to the ocean 

Tides cited by Stephenson et al. in 25 and continuous 

curves that are corresponding to decelerating and 

accelerating cycles due to the Himalayas’ Mountains 

range. Except the point where tot = 0 and its vicinity, 

the slope of the dashed line, due to the oceanic Tide is 

very small compared to the curve of angular speed 

change, due to the Mountain’s forces. At point tot = 

0, the Mountain’s effect cancels completely that of the 

Tide. Moreover, in the vicinity of this singular point, the 

two effects are comparable. In these circumstances, 

the effect of the Tides appears as background noise in 

comparison to that of the Himalayas’ Mountains. At 

short-time scale, the Mountain’s effect cancels the 

Tides; it is as if the Tide does not exist. Therefore, if the 

Mountains exist, they exist only to fill some important 

roles concerning the stability of the Earth’s rotation 

motion. 

 

5.3. Cyclically change in the angular speed of the 

Moon 

Using again eq. 1 we deduce the expression for kinetic 

energy: 

                    
K

E
mv

r

mG
==

22

M 2

                         (eq. 21) 

 

     As the Moon takes falls toward the Earth (orbit’s 

radius decreases), then the left term of the eq. 21 

increases and, therefore, the orbital tangential 

velocity v in the central term also increases, with 

kinetic energy EK and vice-versa. It follows that angular 

speed (v = r) also varies so that we have: 

                     
dt

d

2

3

dt

d r

r


−=


                             (eq. 22) 

 

Substitute each physical quantity by its value in eq. 22, 

we have: 
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Thus, for decelerating cycles, we have dr/dt  0 i.e., the 

angular speed  of the Moon decreases, and for 
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accelerating cycles dr/dt  0, the angular speed of the 

Moon increases. 

 

6. The Himalaya Mountains effect versus global 

climatic warming on the Earth's moment of inertia. 

     The warming of our planet and the melting of Ice 

Mountains could dilate the Earth’s globe and thus 

decelerate its rotation motion because its moment of 

inertia changes like the ballet dancer or the skater, 

lifting their arms, decelerates. The consequence of 

this would be to lengthen the length of the day, 

knowing that it was measured in relation to the Sun, 

which was an independent “standard”.  

Suppose all the irregularities in the earth's crust 

(Mountains, bumps, hollows, etc.) have been flattened 

so that the Earth becomes a perfectly smooth sphere, 

since the Earth is a "very smooth" sphere like a “bed”, 

water therefore covers the entire Earth's surface. It is 

assumed that the thickness of the water’s layer thus 

formed is uniform. The physical system formed by 

Earth and water is also in the form of a sphere of 

radius RM (maximum radius). The depth of the water 

layer will therefore be everywhere RM − Rt where Rt = 

6,371 103 m. Let's ignore the effect of ocean tides and 

the mass of the atmosphere, the coefficient of the 

volume thermal expansion of water (soft) at a 

reference temperature 20°C is v  0,21  10−3 K−1. The 

initial volume of water is estimated at V0 = 1,35  1018 

m3 which is equal to 1,35  1021 kg  at T = 20 °C. Using 

the known empirical dilatation formula V = vV0T, at 

T we have, V = V0, and the volume for a global warming 

of the Earth of 5 °C, i.e., at T + 5 °C, we have V = 1,35122 

 1018 m3. This volume will therefore be contained 

between the spheres of radius Rt (the smallest) and of 

radius RM (the largest). The volume of a sphere of 

radius R is 4/3R3. Then, at T, RM = 6,373645625  106 m 

and at T+5 °C, RM = 6,373648006  106 m. We therefore 

observe a depth of the oceanic water layer of 2645,625 

m for T at 2648,006 m at T + 5 °C. So, the rise in sea 

level due to the planet's temperature increase of 5 °C 

is 2.38 m. The oceans occupy about 2/3 of the Earth's 

surface, and therefore the sea level should normally 

exceed this value. The moment of inertia J0 of a hollow 

homogeneous sphere of small radius Rt, large radius RM 

and density  with respect to one of its diameters is:  

                         ( )5

t

5

M0
RRπρ

15

8
J −=  

 

At T,  = 1000 kg/m3, the moment of inertia is equal to  

3,6545850851 10 34 kg.m2. At T+5 °C,  = 999,1008093 

kg/m3, the moment of inertia is equal to 3,6545864507 

10 34 kg.m2. 

The moment of inertia Jt of a full homogeneous sphere 

of radius Rt, with respect to one of its diameters is 

2/5MR2, and expressing there as a function of the 

density  of the earth, it becomes:  

                                 
5

tt
ρπR

15

8
J =  

 

The density of the earth will be taken as 5500 kg/m3 

and the moment of inertia of solid sphere is equal to 

9,6727355744  10 37 kg.m2.  

The sum of the moments of inertia of the earth and 

the spherical layer of ocean water is Jtot = 9,6763901595 

 10 37 kg.m2 at T and Jtot = 9,6763901608  10 37 kg.m2 

at T + 5°C.  In addition, the global mean surface 

temperature has increased by about 1 °C during the 

last two decades 28. The moment of inertia change 

of the Earth is J = 2,7311560991  10 27 kg.m2 per 1°C. 

The positive sign of J means that the moment of 

inertia of the Earth increases with global warming. 

Substitute each physical quantity by its value once 

again in eq. 14, we obtain,  

            
11

37

27

1082,2
10  959,67639015

10 912,73115609

τ

δτ −
=




=  

     The rate by which the length of the day is increased 

is   2.44 s per 20 years or  83.5 ps/cycle. As we 

can see, the rate due to global climate change is 

negligible compared to the rate due to the force’s 

action of the Himalaya Mountains on the Earth which 

is 25 ns/cycle. Therefore, the effect of the Himalayan 

Mountains range alone can also hide the effect of 

global warming. 
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7. Discussion 

     Our hypothesis concerning the existence of a single 

Mountain on the Earth clearly shows (as it has never 

been done) that the forces of attraction between the 

Moon and a Mountain alone as small as it may be, 

would continually force the Earth’s rotation to 

accelerate and decelerate twice a day and the Earth 

therefore vibrates; the Earth is destabilized by the 

Mountain’s pressure force. Those perturbations of the 

Earth’s rotation are instantly communicated to the 

Moon according to the conservation of angular 

momentum of the Earth-Moon system. On the short-

time scale, the Moon will also vibrate. Thus, those lunar 

vibrations will retroactively destabilize the Earth’s 

rotation. In the long term, these can cause the Earth 

to deviate far away from its orbit. 

 

7.1 The Himalayas’ Mountains cancels the effect of 

their antipode anomalies on the Earth's rotation 

motion 

     We have demonstrated above that the Himalaya 

Mountain range exerts a pressure force on the Earth 

and the existence of these Mountains alone 

destabilizes the Earth’s rotation motion.  

We have found that the distance between the Earth 

and the Moon varies making the Earth and the Moon 

vibrate. This vibration phenomenon of the Earth’s 

rotation motion due to the pressure force of a single 

Mountain is not easy to detect by our sense organs. 

The biggest obstacle that prevents us from seeing the 

effect of a single Mountain is the fact that the 

Mountains that exist on Earth are numerous. There 

exists several thousands of Mountains on Earth and 

the sum of their effects on the Earth’s rotation 

renders invisible the effect of any Mountain alone. 

Moreover, the shape of the Earth is not spherical, nor 

flat, not even ellipsoid, it is geoidieal. Anyhow, the 

matter is that Earth's crust also contains thousands of 

irregularities such bumps, valleys, hollows and fracture 

zones. Obviously, there should be an antipode mass for 

each Mountain that exists to balance the Earth’s 

motion to keep it dynamically stable. In fact, the 

effects of all Mountains and their antipodes anomalies 

on the Earth’s rotation motion almost cancel each 

other out. The sum of the Mountains and the 

anomalies effects on the Earth’s rotation renders 

invisible the effect of any Mountain alone. This is the 

reason why the effects of Mountains are invisible to us. 

In this perspective, the Mountains play the role of the 

Earth’s balancing corrective masses. The gravity 

center of the anomalies is the phase shifted by  on 

the location of the Mountain’s center. The gravity 

center of the Himalaya’s Mountains as Earth’s 

balancing corrective masses is located at a position ( 

+ ) from the antipode anomalies center, so that the 

sum of their angular momentums is constant as a 

function of time. In other words, the angular 

momentum of the system formed by the Mountains 

and their antipode anomalies remains conservative. 

Since all of the Earth's particles rotate at the same 

angular speed, the moment of inertia of the antipode 

anomalies must be equal to that of the Himalaya 

Mountains range even though their masses are not 

equal. Hence, the moment of forces of antipode 

anomalies should be written like eq. 7 above as: 

             π)sin(2θ
μRG

2

3
τ

3

2

+=

r

m
        (eq. 23) 

It follows therefore that the torque acting on the 

Earth which is the sum of the moments of the forces 

of the Himalayas’ Mountains (eq. 7) and their antipode 

anomalies (eq. 23) is equal to zero. So we can write: 

                                         
0=

tot


 
 

     Therefore, a mass canceling out the effect of the 

Himalayan Mountain range on the Earth's rotation 

must exist somewhere in the Earth's crust. This mass 

is the Earth's balancing correcting mass like a wheel. 

The two masses, the Himalaya’s Mountains range and 

its antipode anomalies, form a couple of two moments 

of their pressure forces whose effect of one cancels 

the effect of the other. As a result, we may state that 

Mountains have a decisive role in the stability of our 

planet. 
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7.2 The Mountains are gravitational pegs that 

stabilize the Earth’s rotation motion 

     Our results allow us to postulate that, in general, 

the effects of the Mountains cancel the effects of their 

antipodes anomalies that exist in the Earth's crust, so 

the Earth’s rotation movement appears relatively 

stable. In fact, for each anomaly or defect, there 

should be a compensation antipode Mountain 

somewhere in the earth's crust, which acts as the 

Earth’s corrective balancing mass like a wheel which 

cancels out its disturbing effect. Nevertheless, the 

effects of Earth's irregularities on its rotation motion 

are not completely neutralized and their studies 

continue even today 29,30.  

In general, the Earth's moment of inertia depends on 

the spatial masses distribution of Mountains and 

anomalies in the Earth's crust.  To clarify more, let us 

imagine that a single Mountain among all the 

Mountains that exist on Earth is completely moved 

from a region where it exists, to another region of the 

earth's crust. Due to the displacement of this mass, 

the Earth’s moment of inertia is changed a little bit. A 

uniform sea level decrease has been assumed in order 

to conserve water mass. If a second Mountain is 

moved from one region where it exists to another 

region, the Earth will be unbalanced a little more. If a 

third Mountain is moved; the Earth will be destabilized 

a little more strongly than before. If all the Mountains 

are moved one after another from the regions where 

they exist to some place on the earth's crust, and then 

the Earth will be greatly destabilized because those 

massive Mountain movements will change the Earth’s 

moment of inertia very much. If the Mountains do not 

exist, then the Earth will remain without balancing 

masses and their antipodes anomalies will not be 

balanced and, as a result, the Earth will vibrate too 

much like an unbalanced wheel and in consequence, 

the Earth will fall to the Sun as it can move infinitely 

away from it. That’s why the existence of Mountains 

on Earth is essential for the stability of the Earth’s 

rotation movement even though their masses are very 

small compared to the mass of the Earth like wheel 

balancing corrective weights. There are thousands of 

Mountains on Earth. There are at least 108 Mountains 

with elevations of 7200 meters above sea level 31. 

The vast majority of these Mountains are located on 

the edge of the Indian and Eurasian plate namely, in 

China, Pakistan, Nepal and India. The center of impact 

of the Himalaya Mountains range is located at (27° 59' 

8.5" N, 86° 54' 58.8" E) and its impact antipode center 

is located at (40° 41' 54.5" S, 106° 2' 54.8" E), near the 

Sala y Gomez Valvidia Fracture Zone (Fig. 4) 32.  

 

  
Figure 4 − The Himalayan Impact Antipode is placed at 

40° 41' 54.5" S, 106° 2' 54.8" E, near the center of the 

Valvidia Fracture Zone. 

 

     The circle whose center this impact point and 

radius 20 km curves through Chile and Argentina 

Mountain range (see Fig. 5). Otherwise, if the Himalaya 

Mountain range exists where it exists, it is to play an 

extremely important role, the Himalayas play 

essentially the role of the Earth's balancing corrective 

masses like all other Mountains that exist on Earth. The 

moments of the forces of the Himalayas Mountains 

nullify out those of the Valvidia Fracture Zone and the 

Mountains of Chilie and Argentina. In addition, there 

are also 13000 seamounts taller than 1.5 km 33,34. 

There are almost 33452 seamounts and 138412 knolls 

(height between 200 and 1000 m) 35,36. Besides 

their role like any other irregularity of the seabed, such 

as islands and cliffs in the oceans acting as brakes that 

prevent the Tides from moving westward by a friction 

mechanism 3, seamounts can also contribute as 

compensation antipode irregularities to the stability 

of the Earth’s rotation motion. 

Let us imagine then, that all the Mountains were 

brought together in a single region of the Earth's 

surface to form one, and then the Earth's center of 
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gravity will no longer coincide with the axis of rotation, 

the Earth's moment inertia will no longer be the same 

and the Earth will skid. If the Earth presented a 

dynamic imbalance, this shows that the sum of the 

moments of the forces with respect to its center is not 

zero. As the position of the big Mountain changes each 

every half rotation, the Earth will swing diagonally left 

and right during its rotation. This imbalance 

communicates oscillations to the Earth which make it 

unstable. The Earth is outside of its dynamic 

equilibrium; it slows down then oscillates like a 

pendulum, under the effect of gravity, then finally 

stops. The large Mountain thus formed will stop at the 

point where the magnitude of the sum of all 

gravitational forces is greater. 

 

  
Figure 5: At 20 kilometers from the center of impact, 

this circle is formed. In the North is the Sala y Gomez 

Fracture Zone. The circle then curves through Chile 

and Argentina Mountains. The Himalayan Impact 

Antipode is placed at 41° 17.295'S  89° 59.304'W, near 

the center of the Valvidia Fracture Zone. 

 

     Anomalies and defects existed in the Earth’s crust 

and the Mountains are the corrective masses which 

balance the Earth’s anomalies and defects. Mountains 

are for the Earth what are balancing small corrective 

weights for a vehicle wheel. In this regard, an analogy 

between the Earth and the wheel of a vehicle is 

evident: the Earth's crust is the analogue of the tire, 

the continental mantle of the Earth and its core are 

the analogue of the wheel’s rim, and the Mountains are 

the analogue of small wheel balancing masses, and the 

axis of rotation of the Earth is the analog of the vehicle 

hub. The role of the wheel balancing corrective 

weights is to eliminate vibrations of the vehicle’s 

wheel. Various forces that perturb the Earth’s rotation 

37,38 are analogous of the friction of the wheel with 

rolling, asphalt and air. From this point of view, the 

Mountains thus, play the role of the small balancing 

masses of the dynamic equilibrium movement of the 

Earth, like the small balancing masses which used to 

balancing a wheel. The center of the mass of each 

Mountain, whether small or large, has its own 

trajectory which is in the form of a circle around the 

Earth’s gravity center. It follows that circular paths of 

Mountains above the Earth's surface are greater than 

those of Mountains below sea level. Hence, the higher 

the height of a Mountain, the greater the moment of 

force, and its action on Earth is important. In addition, 

Mountains and their antipode anomalies centers of 

masses must always be diametrically opposite to each 

other about the center of masse of the Earth. Usually, 

the Earth is in a dynamic equilibrium because the sum 

of all dynamic moments due to all Mountain forces and 

their antipodes anomalies is zero. That is,  

                   CsterL  =
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and hence, by using the Angular Momentum Theorem, 

the total torque  

                               0τ 

=

N
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     The Mountains are the gravitational stakes of the 

Earth. They keep it in equilibrium because the sum of 

their angular moments with respect to the Earth's 

center of mass is constant, resulting in a dynamic 

global torque of zero. 

     Finally, the calculation that we have made in this 

paper is simplified. In a complete calculation, it is 

necessary to take into account the inclination of the 

Earth’s rotation axis with respect to the perpendicular 

to the plane of the ecliptic which actually equals to  
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23°26', the action of the Sun’s effect on the Mountains, 

the fact that the Earth revolves around the Sun and 

the Moon is moving on an opened helicoidally orbits 

following the Earth motion. We do not know how all 

the physical magnitudes that we have calculated will 

become when the calculation will be complete. 

 

8.Conclusion 

     The aim of this paper was to study the Mountain’s 

effects on the Earth’s rotation motion. The prove 

related to the mountains as pegs stabilizers for the 

Earth that was being mentioned in the Quran was 

already reported in these papers39,40. Here in our 

article however, it was established that Mountains like 

gravitational pigs stabilize the Earth’s rotation 

movement. The calculation is based mainly on the laws 

of the classical Mechanics. The physical system studied 

is the Himalayas’ Mountains range. The obtained 

results show that the angular acceleration of the 

Earth’s rotation varies as a function of time due to the 

moment of the pressure force of the Himalaya 

Mountains range. This acceleration variation led us to 

divide the LOD into four cycles of equal duration: two 

accelerating cycles of Earth’s rotation motion and two 

decelerating cycles. The Earth's rotation is accelerated 

during accelerating cycles and decelerated during 

braking cycles.  

     The obtained amplitude of the angular acceleration 

which is  3.95  10−21 rad.s−2 is much greater than that 

of the Earth’s rotation due to the ocean Tides ( −6.2 

 10−22 rad/s2). The distance between the Earth and the 

Moon varies also with an amplitude rate peak-to-peak 

of 181.35 m/cycle, which means that the Moon will 

approach the Earth during accelerating cycles and 

moving away from it during decelerating cycles. The 

corresponding rate change in the length of day is 25 

ns/cycle. Therefore, the Moon, like the Earth, can 

vibrate due to a single big Mountain. The obtained 

amplitude rate is about  10 times greater than the 

short-term rate ( 26 m/cycle or equally 3,82 cm/yr) 

due to the global braking of the Earth’s rotation 

motion. The short-term rate of the LOD due to global 

climatic warming ( 83.5 ps/cycle) is also negligible 

compared to that, due to the pressure force’s action 

of the Himalaya Mountains on the Earth (25 

ns/cycle). Therefore, the effect of the Himalayan 

Mountains range alone can hide equally the effect of 

global warming.  

      Our results show that a single Mountain, if it existed 

alone, will destabilizes enough the Earth and can hide 

completely the effects of all causes that affect the 

Earth’s rotation motion. The biggest obstacle that 

prevents us from seeing the role that a single 

Mountain plays is the fact that the Mountains that 

exist on Earth are numerous. There exist several 

thousands of Mountains on the earth's crust and under 

the seas. The irregular Earth’s crust contains also 

many anomalies and defects. The sum of the effects of 

Mountains and anomalies on the Earth’s rotation 

motion renders invisible the effect of any Mountain 

alone. Thus, the Mountains and anomalies the one’s 

effects cancel the others. If the Mountains did not 

exist, the Earth vibrated too much from the initial time 

of its existence like an unbalanced wheel that has many 

defects or like a tent without stakes, and then it fell on 

the Sun a long time ago. Mountains are therefore for 

the Earth what are balancing corrective weights for a 

wheel. Mountains are Earth’s balancing corrective 

masses that cancel the Earth’s antipode anomalies. 

Without the stabilizing role of Mountains, the dynamic 

equilibrium of the Earth will not exist. In summary, the 

Mountains with their roots are like gravitational pegs 

that stabilize the Earth’s rotation motion. If it weren’t 

for mountains, our planet wouldn’t exist on its present 

orbit and could be an inert body orbiting far away 

somewhere in the Universe like many others. 
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