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Abstract 

The problems of Eigen structure assignment has been studied. As an immediate part of that, the problem 

addressed is the development of measures of “skewness” between subspaces which are in the direct sum 

decomposition of the state space and   a concept of angle between a set of subspaces.  
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1. Introduction 

     The problem that frequently emerges in the study 

of performances of linear systems is the issue of 

“skewness” of eigenframes. This problem is linked to 

sensitivity of eigenvalues to parameter uncertainty, 

perturbations, as well as sensitivity of Nyquist 

diagrams to model parameter uncertainty. 

     These skewness properties are also linked to 

measures of controllability and observability, when 

these are assessed in their model setting. So far, the 

measure of skewness has been considered on 

eigenframes corresponding to distinct eigenvalues 

and thus standard tools such as the Gramian, 

Singular Value Decomposition, Condition Number, 

Sdur compliment can be used. However, frequently, 

we have eigenframes corresponding to repeated 

eigenvalues, complex eigenvalues, where a vector 

basis set is not uniquely defined, although the 

corresponding subspaces are.  

     The problem that is addressed here is the 

development of measures of “skewness” between 

subspaces defining a direct sum decomposition of 

the state space and thus developing a concept of 

angle between sets of subspaces. 

     The aim of the paper is to provide the required 

new concept of the relative positioning between 

subspaces that can be used in quantifying: 

• Sensitivity of eigenvalues 

• Relative measures of controllability and 

observability. 

• Deviations from strong stability to 

overshooting behaviour. 

This work is based on: 

1. Development of general properties for 

positioning of subspaces in direct sum 

decomposition. 

2. Development of measures of skewness 

using: 

• The Gramian 

• Condition number 

• Spread of singular values 

      Our intention in this paper is to produce some 

results which could provide the bases for the 

computation of the most orthogonal decomposition 

of the state space into controllability spaces. This is 

considered as a first step in selecting a set of closed–

loop eigenvectors which are nearly orthogonal and 

thus achieve reduced sensitivity. This discussion 

involves parametrising the family of controllability 

subspaces using results on the parameterisation of 

minimal bases. The solution to the problem of 

finding the most orthogonal decomposition still 

remains open.    

2. Problem statement and preliminary results 

     Let us consider the direct sum decomposition of 

ℝ𝑛
 in terms of some spaces 𝑉𝑖   such that 𝑉𝑖 ∈

 ℝ𝑛 , dim 𝑉𝑖  =  𝜌𝑖  , 𝑖 =1,2, …, k.  i.e.   ℝ𝑛 = 𝑉1 ⊕ 𝑉2 ⊕

 ⋯ ⊕ 𝑉𝑘 .                                                            (2.1) 

The set of such spaces {𝑉𝑖 , 𝑖 ∈ {1,2,⋯ , 𝑘}} will be 

referred to as a decomposing set of ℝ𝑛. Clearly, 

these spaces are linearly independent. What we 

want to investigate is the relative “degree” of 

independency between these spaces.  

     The spaces 𝑉𝑖  are assumed given and may 

represent the generalised eigenspaces associated 

with repeated eigenvalues, or the two-dimensional 

space associated with a pair of complex conjugate 

eigenvalues, or the higher order spaces associated 

with repeated complex eigenvalues. 

Let 𝑉 be a basis of  ℝ𝑛 defined as: 

𝑉 =  [𝑉1|𝑉2| ⋯ |𝑉𝑘]                                                                                                                         

(2.2)                                                                                            

where 𝑉1 is a basis of 𝑉𝑖 . We can always assume that 

the columns of  𝑉𝑖  are normalised to unit length. 

Clearly, 𝑉𝑖 ∈  ℝ𝑛×𝜌𝑖    and so for any square matrix Q 

such that: 

http://www.emiratesscholar.com/
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𝑄 =

[
 
 
 
 
𝑄1 0 ⋯ 0 0
0 𝑄2 0 ⋮ 0
⋮ 0 ⋱ 0 ⋮
0 ⋯ 0 𝑄𝑘−1 0
0 ⋯ 0 0 𝑄𝑘]

 
 
 
 

,  𝑄𝑖 ∈  ℝ𝜌𝑖×𝜌𝑖  and 

|𝑄𝑖| ≠ 0, 𝑖 = 1,2,⋯ , 𝑘, 

any other basis of ℝ𝑛, consistent with the (2.1) 

decomposition is given by: 

�̃� = [�̃�1|�̃�2|⋯ |�̃�𝑘] =

[𝑉1|𝑉2|⋯ |𝑉𝑘]

[
 
 
 
 
𝑄1 0 ⋯ 0 0
0 𝑄2 0 ⋮ 0
⋮ 0 ⋱ 0 ⋮
0 ⋯ 0 𝑄𝑘−1 0
0 ⋯ 0 0 𝑄𝑘]

 
 
 
 

.                                                 

(2.3) 

Bases such as those defined above, will be referred 

to as {𝑉𝑖 }𝑘 − structured bases of ℝ𝑛
. Of special 

interest are the so called normal − {𝑉𝑖 }𝑘 −

structured bases which are defined by the property 

that the columns of each 𝑉𝑖 ∈  ℝ𝑛 are orthonormal, 

i.e. 

𝑉𝑖
𝑡𝑉𝑖 = 𝐼𝜌𝑖

 ,      𝑖 =

1,2,⋯ , 𝑘                                                                                                         

(2.4) 

Normal − {𝑉𝑖 }𝑘 − structured bases are examined 

first. One may preliminarily compare the structure 

of singular values corresponding to any two 

normal − {𝑉𝑖 }𝑘 − structured bases as follows: 

Proposition 1.  Let 𝑉𝑖 and 𝑉�̃� be two normal − {𝑉𝑖 }𝑘 −

structured bases, then 𝑉𝑖 and 𝑉�̃�  have the same 

singular values. 

Proof: If 𝑉 and  �̃� are normal − {𝑉𝑖 }𝑘 −

structured bases, then they are related as:  

 �̃� = [�̃�1|�̃�2|⋯ |�̃�𝑘] =

[𝑉1|𝑉2|⋯ |𝑉𝑘]

[
 
 
 
 
𝑄1 0 ⋯ 0 0
0 𝑄2 0 ⋮ 0
⋮ 0 ⋱ 0 ⋮
0 ⋯ 0 𝑄𝑘−1 0
0 ⋯ 0 0 𝑄𝑘]

 
 
 
 

 

where 𝑄𝑖  are orthogonal i.e., 𝑄𝑖
𝑡𝑄𝑖 = 𝐼𝜌,  𝑖 =

1,2,⋯ , 𝑘.    

Clearly, �̃�𝑡�̃�  = 𝑑𝑖𝑎𝑔{𝑄𝑖
𝑡}. 𝑑𝑖𝑎𝑔{𝑄𝑖 } and since 

𝑑𝑖𝑎𝑔{𝑄𝑖 } are orthogonal, then  𝑉 and  �̃�  have the 

same singular values. 

     As we expected the above result suggests that 

any selection of orthogonal bases leads to the same 

singular values (all equal to one).  

     However, the main question arises when one of 

the bases is not necessarily orthogonal. We will 

investigate this as follows: 

Example 1: Given the direct sum decomposition as 

in (2.1), where  𝑑𝑖𝑚(𝑉) = 𝑒𝑖 ,  

𝑉𝑖 = [𝑣1𝑖, 𝑣2𝑖 , ⋯ , 𝑣𝑒𝑖𝑖
] an orthonormal basis of 

𝑉𝑖  generates alternative bases for 𝑉𝑖 ,  

 �̃�𝑖 = [�̃�1𝑖, �̃�2𝑖 , ⋯ , �̃�𝑒𝑖𝑖
], not necessarily orthonormal 

such that  

‖�̃�𝑗𝑖‖ = 1, 𝑖 = 1,2,⋯ , 𝑘,   𝑗 = 1,2,⋯ , 𝑒𝑖. 

Proposition 2: If 𝑉𝑖 = [𝑣1𝑖 , 𝑣2𝑖 , ⋯ , 𝑣𝑒𝑖𝑖
], 𝑖 = 1,2,⋯ , 𝑘 

are orthonormal bases of 𝑉𝑖 , then �̃�𝑖 =

[�̃�1𝑖 , �̃�2𝑖, ⋯ , �̃�𝑒𝑖𝑖
] is also a basis with ‖�̃�𝑗𝑖‖ = 1, if and 

only if 𝑉�̃� = 𝑉𝑖𝑄𝑖 , 𝑄𝑖 = [𝑞1𝑖 , 𝑞2𝑖 , ⋯ , 𝑞𝑒𝑖𝑖
], in which  

‖𝑞𝑗𝑖‖ = 1, 𝑖 = 1,2,⋯ , 𝑘,   𝑗 = 1,2,⋯ , 𝑒𝑖. 

Proof:   𝑉𝑖  ̃𝑎𝑛𝑑 𝑉𝑖 are linked as: 

�̃�𝑖 =

[�̃�1𝑖 , �̃�2𝑖, ⋯ , �̃�𝑒𝑖𝑖
]=[𝑣1𝑖 , 𝑣2𝑖 , ⋯ , 𝑣𝑒𝑖𝑖

] [

𝑞1𝑖
1 ⋯ 𝑞𝑒𝑖𝑖

1

⋮  ⋮
𝑞1𝑖

𝑒𝑖 ⋯ 𝑞𝑒𝑖𝑖
𝑒𝑖

] 

Hence, �̃�𝑗𝑖 = 𝑣1𝑖𝑞𝑗𝑖
1 + 𝑣2𝑖𝑞𝑗𝑖

2 + ⋯+ 𝑣𝑒𝑖𝑖
𝑞𝑗𝑖

𝑒𝑖 ,   𝑗 =

1,2,⋯ , 𝑒𝑖,  and  

‖�̃�𝑗𝑖‖
2

= �̃�𝑗𝑖
𝑇 �̃�𝑗𝑖 = (𝑣1𝑖𝑞𝑗1

𝑖 + ⋯ +

𝑣𝑒𝑖𝑖
𝑞𝑗𝑖

𝑒𝑖)
𝑇

(𝑣1𝑖𝑞𝑗1
𝑖 + ⋯+ 𝑣𝑒𝑖𝑖

𝑞𝑗𝑖
𝑒𝑖) = (𝑞𝑗𝑖

𝑖 )
2
+ ⋯ +

(𝑞𝑗𝑖
𝑒𝑖)

2

= ‖𝑞𝑗𝑖‖
2
 , 𝑗 = 1,2,⋯ , 𝑒𝑖 

http://www.emiratesscholar.com/
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due to orthogonality, and hence, ‖�̃�𝑗𝑖‖ = 1 if and 

only if ‖𝑞𝑗𝑖‖ = 1.                                                             

3. Measuring the degree of orthogonality 

     In this part and based on the above result, we will 

use different type metrics to define the degree of 

orthogonality of the decomposition, or alternatively 

to measure the skewness of the direct sum 

decomposition.  

 

3.1. The Gramian 

     A standard test for checking the degree of 

orthogonality is that based on the volume or the 

Gramian and so, the Gramian of the �̃� matrix, in (2.3), 

is given by: 

𝐺(�̃�) = det(�̃�𝑡�̃�) = |𝑑𝑖𝑎𝑔{𝑄𝑖
𝑡}det (�̃�𝑡�̃�)𝑑𝑖𝑎𝑔{𝑄𝑖}|                                                                      

(3.1) 

and since V is orthogonal with unit length, then  

𝐺(�̃�) = det(𝑉𝑡𝑉) .  det(𝑑𝑖𝑎𝑔{𝑄𝑖
𝑡} .  𝑑𝑖𝑎𝑔{𝑄𝑖})                                                                               

(3.2) 

     According to the Hadamard’s inequality theorem 

[1], [2], the determinant of a matrix, when it’s 

restricted to real numbers, can be bounded in 

terms of the lengths of its vectors. Specifically, 

Hadamard's inequality states that if N is the matrix 

having columns  

 𝑣𝑖 , 𝑖 = 1,2,⋯ , 𝑛,      then       |det( 𝑁)| ≤

∏ ‖𝑣𝑖‖
𝑛
𝑖=1                                                          (3.3) 

Clearly, in our case, since the length of the vectors 

belong to 𝐺(�̃�) can be in the range from 0 to 1. So, 

as a result, det (𝐺(�̃�)) will also be in the range from 

0 to 1. 

The main objective to be studied is the condition in 

which this value is maximum or in other hand, the 

vectors in �̃�, has maximum angle. 

Proposition 3: If 𝑉 = [𝑉1|𝑉2|⋯ |𝑉𝑘]  is any basis 

corresponding to ℝ𝑛 =  𝑉1 ⊕ 𝑉2 ⊕ ⋯ ⊕ 𝑉𝑘   

decomposition where 𝑉𝑖  is an orthogonal basis of 

𝑉 with unit length vectors, then: 

(i) The singular values of 𝑉𝑡𝑉 are invariant of 

any selection of orthogonal basis. 

(ii) The value of  det(𝑉𝑡𝑉 ) is invariant of any 

selection of the orthogonal basis. 

Proof: Any two orthonormal bases 𝑉, �̃� are related 

by (3.1) as: 

�̃� = [�̃�1|�̃�2|⋯ |�̃�𝑘]

= [𝑉1|𝑉2|⋯ |𝑉𝑘]

[
 
 
 
 
𝑄1 0 ⋯ 0 0
0 𝑄2 0 ⋮ 0
⋮ 0 ⋱ 0 ⋮
0 ⋯ 0 𝑄𝑘−1 0
0 ⋯ 0 0 𝑄𝑘]

 
 
 
 

 

where 𝑄𝑖  are orthogonal bases, i.e., 𝑄𝑖
𝑡𝑄𝑖 = 𝐼𝜌𝑖

 . Thus    

𝑉𝑡𝑉 = 𝑑𝑖𝑎𝑔{𝑄𝑖
𝑡}  . 𝑉𝑡𝑉.  𝑑𝑖𝑎𝑔{𝑄𝑖}, 

and since 𝑄𝑖  are orthogonal, the result follows.                                                                        

Assume now that the {𝑉𝑖 , 𝑖 ∈ {1,2, … , 𝑘}} bases are 

orthogonal, and we select another arbitrary bases  

�̃�𝑖 = 𝑉𝑖𝑄𝑖  with unit length vectors, but not 

necessarily orthogonal. Inspection of equation (2.3) 

and the latest result suggest that the value of 𝐺(�̃�) 

really depends on the property of the matrix 𝑇 where 

𝑇 is as follows: 

𝑇 =

[
 
 
 
 
 
𝑄1

𝑡 0 ⋯ 0 0

0 𝑄2
𝑡 0 ⋮ 0

⋮ 0 ⋱ 0 ⋮
0 ⋯ 0 𝑄𝑘−1

𝑡 0

0 ⋯ 0 0 𝑄𝑘
𝑡 ]
 
 
 
 
 

[
 
 
 
 
𝑄1 0 ⋯ 0 0
0 𝑄2 0 ⋮ 0
⋮ 0 ⋱ 0 ⋮
0 ⋯ 0 𝑄𝑘−1 0
0 ⋯ 0 0 𝑄𝑘]

 
 
 
 

 

=  𝑑𝑖𝑎𝑔{𝑄𝑖
𝑡𝑄𝑖}                                      (3.4) 

or its determinant |𝑇| defined as |𝑇| = ∏ |𝑄𝑖
𝑡𝑄𝑖|

𝑘
𝑖=1 . 

For any matrix  𝑄 ∈ ℝ𝜌𝑖×𝜌𝑖 , 𝑄𝑖 = [𝑞1, 𝑞2, ⋯ , 𝑞𝜌𝑖
] with 

|𝑞𝑖| = 1, we have that: 

http://www.emiratesscholar.com/
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𝑝 = 𝑄𝑡𝑄 =

[
 
 
 
 
𝑞1

𝑡

𝑞2
𝑡

⋮
𝑞𝑘

𝑡
]
 
 
 
 

[𝑞1 𝑞2 ⋯ 𝑞𝑘] =

[
 
 
 
 
𝑞1

𝑡𝑞1 𝑞1
𝑡𝑞2 ⋯ 𝑞1

𝑡𝑞𝑘

𝑞2
𝑡𝑞1 𝑞2

𝑡𝑞2 ⋯ 𝑞2
𝑡𝑞𝑘

⋮ ⋮ ⋮ ⋮
𝑞𝑘

𝑡𝑞1 𝑞𝑘
𝑡𝑞2 ⋯ 𝑞𝑘

𝑡𝑞𝑘]
 
 
 
 

                                                  (3.5) 

or    𝑃 =

[
 
 
 
 

1 𝑞1
𝑡𝑞2 ⋯ 𝑞1

𝑡𝑞𝑘

𝑞2
𝑡𝑞1 1 ⋯ 𝑞2

𝑡𝑞𝑘

⋮ ⋮ ⋮ ⋮
𝑞𝑘

𝑡𝑞1 𝑞𝑘
𝑡𝑞2 ⋯ 1 ]

 
 
 
 

.                                                                                                

(3.6) 

Note that the matrix 𝑃 is positive definite. 

Furthermore: 

|𝑇|

=  ∑det{𝑄𝑖
𝑡𝑄𝑖}

𝑘

𝑖=1

                                                                                                                                        (3.7) 

                                                                                                     

The main issue is now the properties of the 

det{𝑄𝑖
𝑡𝑄𝑖} and the investigations of the conditions 

under which we can maximise det{𝑇}. We note first 

the following lemma. 

Lemma 1: For any 𝑛 × 𝑛 positive definite matrix  𝑋,  

with constant trace 𝑡𝑟[𝑋] = 𝛼, the determinant is 

maximised when  𝑋 =
𝛼

𝑛
𝐼𝑛 .   

Proof: Applying Hadamard inequality (3.3), the 

determinant of an 𝑛 × 𝑛 matrix 𝑋 is maximized when 

the matrix is diagonal, that is, eigenvalues of the 

matrix are the diagonal elements.  

If   𝑎 = (𝑎1, 𝑎2, ⋯ , 𝑎𝑛), ∑ 𝑎𝑖𝑖 , is the vector of 

eigenvalues of 𝑋, from majorization theory [3], the 

vector 𝑎𝑡 = (
𝛼

𝑛
,
𝛼

𝑛
, ⋯ ,

𝛼

𝑛
), with all elements equal, is 

majorized by any other vector 𝑎.  

Also, a majorization result says that if 𝑔 is a 

continues nonnegative function on 𝐼 ⊂ ℝ, a function 

𝜑(𝑋) = ∏ 𝑔(𝑥𝑖)
𝑛
𝑖=1   is Schur-concave (convex) on 𝐼𝑛, 

if and only if 𝑙𝑜𝑔(𝑔) ln 𝑔 is concave (convex) in 𝐼𝑛. In 

our case, log(x)   is a concave function on ℝ+and 

det(𝑋) = ∏ 𝑎𝑖
𝑛
𝑖=1   is a Schur-concave function and its 

maximum is attained for 𝑎𝑡.  Having all eigenvalues 

equal is equivalent to saying that 𝑋 is a scaled 

identity matrix, under its trace constraint [4].                                                                               

For our case, the matrix 𝑃 which has: 𝑡𝑟𝑎𝑐𝑒[𝑃] = 𝑘, 

will have its determinant maximised when 𝑃 = 𝐼, i.e. 

the transformation 𝑄𝑖   are orthogonal. This then 

leads to the following main result. 

Theorem 1:  Let us consider the decomposition of ℝ𝑛 

as: 

ℝ𝑛 = 𝑉1 ⊕ 𝑉2 ⊕ ⋯ ⊕ 𝑉𝑘 , dim 𝑉𝑖 = 𝜌𝑖 , 𝑖 =

1,2, … , 𝑘.   

and let 𝑉𝑖 be a basis for each of the 𝑉𝑖  spaces of 

vectors with unit length. Then the Gramian of the 

basis 𝑉 = [𝑉1|𝑉2|⋯ |𝑉𝑘] is: 

𝐺(𝑉) = 𝑑𝑒𝑡(

[
 
 
 
𝑉1

𝑡

𝑉2
𝑡

⋮
𝑉𝑘

𝑡]
 
 
 

𝑉 = [𝑉1|𝑉2|⋯ |𝑉𝑘]) 

and it is maximised if and only if the bases 𝑉𝑖  for the 

𝑉𝑖  subspaces are orthogonal with unit length. 

Proof: The invariant of 𝐺(𝑉) for the selection of 

different bases has been 

established.                                                                           

This together with lemma 1, establishes the result.                                                                                            

The above establishes 𝐺(𝑉), where {𝑉𝑖 } are any 

orthogonal, unit length, as a measure of the angle 

between a set of subspaces, that will be defined as 

the Gramian angle of the {𝑉𝑖 , 𝑖 ∈ {1,2, … , 𝑘}} 

decomposition. 

3.2. Condition Number 

     The Condition Number could be considered to be 

used as another measurement tool in order to 

measure the “skewness” of eigenframes. 

The condition number is defined as:  𝜅(𝐴) =
𝜎max(𝐴)

𝜎min(𝐴)
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where 𝜎𝑚𝑎𝑥  and 𝜎𝑚𝑖𝑛  are maximal and minimal 

singular values of 𝐴 respectively. 

 In general: 𝜅(𝐴) ≥  1,
 

and hence for any normal 

matrix 𝜅(𝐴) = 1  as all the singular values of the 

normal matrix are equal to 1. 

Considering the above description of condition 

number, we will define another measure of the 

degree of orthogonality or another measure of 

skewness of the decomposition. 

Definition: If  𝐴 ∈ 𝑀𝑚×𝑛 is a given matrix, and   𝜎1 ≥

 𝜎2 ≥ ⋯ ≥  𝜎𝑞 ≥ 0,   𝑞 = min(𝑚, 𝑛), then ‖𝐴‖ =  𝜎1 

,  [5]. 

Lemma 2:  For any matrix 𝐴 ∈ 𝐹𝑚×𝑛, there are 𝑛 

singular values such that: 

 𝜎1 ≥  𝜎2 ≥ ⋯ ≥  𝜎𝑞 > 0 ; where 𝜎max =

 𝜎1 and 𝜎min = 𝜎𝑛 ,  [5].                                                

Corollary 1:  Let 𝐴 ∈ 𝐹𝑚×𝑛 and 𝐴 ∈ 𝐹𝑚×𝑛 , then for all 

𝑖 = 1,2, … ,min(𝑚, 𝑛), we will have  

 𝜎𝑖(𝐴) 𝜎min(𝐵) ≤  𝜎𝑖(𝐴𝐵) ≤ 𝜎𝑖(𝐴) 𝜎max(𝐵)    [6]. 

Corollary 2:  Let 𝐴 ∈ 𝐹𝑚×𝑛. If 𝑛 = 𝑚 and 𝐴 is non-

singular, then:  

‖𝐴−1‖ =  𝜎min(𝐴
−1) =

1

 𝜎max(𝐴)
       [6]. 

Proposition 4: We consider the direct sum 

decomposition on ℝ𝑛 , which is: 

ℝ𝑛 = 𝑉1 ⊕ 𝑉2 ⊕ ⋯ ⊕ 𝑉𝑘 ,                                                                                                          

(3.8)  

where dim (𝑉𝑖)  =  𝜌𝑖  , 𝑖 =1,2, …, k, and all bases 𝑉𝑖 ∈

V𝑖 in the decomposition (3.8) to have unit length 

vectors. Then the Condition Number of the basis 

𝑉 = [𝑉1|𝑉2|⋯ |𝑉𝑘] is  

𝜅(𝑉) =
 𝜎max(𝑉)

𝜎min(𝑉)
 

and it is minimized if and only if the bases 𝑉𝑖 for the 

V𝑖 subspaces are orthonormal. 

Proof: Let the columns of  form an orthonormal 

basis of  . Then all other bases of 𝑉𝑖 consisting of 

vectors of unit length are given as 𝑉𝑖𝑄𝑖   where  

det(𝑄𝑖) ≠ 0 and all the columns of 𝑄𝑖  have unit 

length. Thus, all bases of ℝ𝑛 = 𝑉1 ⊕ 𝑉2 ⊕ ⋯ ⊕

 𝑉𝑘  can be written as 

�̃� = [�̃�1|�̃�2|⋯ |�̃�𝑘]

= [𝑉1|𝑉2|⋯ |𝑉𝑘]

[
 
 
 
 
𝑄1 0 ⋯ 0 0
0 𝑄2 0 ⋮ 0
⋮ 0 ⋱ 0 ⋮
0 ⋯ 0 𝑄𝑘−1 0
0 ⋯ 0 0 𝑄𝑘]

 
 
 
 

𝑉. 𝑄;   𝑄

∈ 𝛷 

where 𝛷 is defined as the set of all block diagonal 

matrices 𝑄 = diag(𝑄1, … , 𝑄𝑘), such that det(𝑄𝑖) ≠ 0 

and all the columns of 𝑄𝑖  have unit length.  

We should show that min
𝑄∈𝛷

𝜅(𝑉𝑄) = 𝜅(𝑉) and that, 

the minimum is attained for 𝑄 = diag(𝑄1, … , 𝑄𝑘)  

with all 𝑄𝑖  orthogonal. First by using corollary 1, we 

have: 

 𝜎𝑖(𝑉) 𝜎min(𝑄) ≤  𝜎𝑖(𝑉𝑄) ≤ 𝜎𝑖(𝑉) 𝜎max(𝑄).                                                                              

(3.9) 

Hence and based on Lemma 2 and Definition 1, we 

can have from (3.11) that for 𝑖 = 1: 

‖𝑉‖

max
𝑗∈𝑘

‖𝑄𝑗
−1‖

≤ ‖𝑉𝑄‖ ≤ ‖𝑉‖max
𝑗∈𝑘

‖𝑄𝑗‖ , 𝑘 = {1,2, … , 𝑘}                                                                

(3.10) 

Now if the minimum singular value named as  𝜎𝑚, 

then for 𝑖 = 𝑛 

 𝜎𝑛(𝑉)

max
𝑗∈𝑘

‖𝑄𝑗
−1‖

≤  𝜎𝑛(𝑉𝑄) ≤  𝜎𝑛(𝑉) max
𝑗∈𝑘

‖𝑄𝑗‖.                                                                                  

(3.11) 

In order to obtain the condition number of �̃� or 

equally,𝑉𝑄, we have: 

𝜅(�̃�) = 𝜅(𝑉𝑄) =
 𝜎max(𝑉𝑄)

𝜎min(𝑉𝑄)
=

‖𝑉𝑄‖

𝜎n(𝑉𝑄)
.  

So, from (3.11) and (3.13), we have: 

iV

iV

http://www.emiratesscholar.com/
http://en.wikipedia.org/wiki/Singular_value
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‖𝑉‖

max
𝑗∈𝑘

‖𝑄𝑗
−1‖

 𝜎𝑛(𝑉)max
𝑗∈𝑘

‖𝑄𝑗‖
≤  𝜅(𝑉𝑄) ≤

‖𝑉‖max
𝑗∈𝑘

‖𝑄𝑗‖

 𝜎𝑛(𝑉)

max
𝑗∈𝑘

‖𝑄𝑗
−1‖

,                                                                                      

(3.12) 

 or equivalently,   
𝜅(𝑉)

max
𝑗∈𝑘

‖𝑄𝑗‖  .  max
𝑗∈𝑘

‖𝑄𝑗
−1‖

≤  𝜅(𝑉𝑄) ≤

𝜅(𝑉).max
𝑗∈𝑘

‖𝑄𝑗‖  .  max
𝑗∈𝑘

‖𝑄𝑗
−1‖                   (3.13)                           

Note that:      ‖𝑄𝑗
−1‖ = 𝜎𝑛𝑗

−1(𝑄𝑗) =
1

𝜎𝑛𝑗
(𝑄𝑗)

  

→    max
𝑗∈𝑘

‖𝑄𝑗
−1‖ =  max

𝑗∈𝑘

1

𝜎𝑛𝑗
(𝑄𝑗)

=  
1

 min
𝑗∈𝑘

 𝜎𝑛𝑗
(𝑄𝑗)

, 

and that (3.12) is equivalent to: 

𝜅(𝑉)

𝜎(𝑄)
≤ 𝜅(𝑉𝑄) ≤ 𝜅(𝑉) . 𝜎(𝑄),                                                                                                        

(3.14) 

where:  𝜎(𝑄) =
max
𝑗∈𝑘

‖𝑄𝑗‖

 min
𝑗∈𝑘

 𝜎𝑛𝑗
(𝑄𝑗)

≥ 1.                                                                                                  

(3.15) 

From (3.14) we get:        
1

𝜎(𝑄)
≤

𝜅(𝑉𝑄)

𝜅(𝑉)
  for every 𝑄 ∈

𝛷.                                                           (3.16)                                                                                        

Also, from (3.15) we have:          

min
𝑄∈𝛷

𝜎(𝑄) = 
1

max
𝑄∈𝛷

𝜎(𝑄)
= 1.                                                    

(3.17) 

So, (3.19) and (3.18) lead to:        min
𝑄∈𝛷

𝜅(𝑉𝑄)

𝜅(𝑉)
 ≥

1.                                                                      (3.18) 

Using (3.16) and noting that 𝜎(𝑄) = 1  if and only if 

𝑄 = diag(𝑄1, … , 𝑄𝑘)   with 𝑄𝑘 orthogonal [see 

Lemma 2 for proof], we have min
𝑄∈𝛷

𝜅(𝑉𝑄)

𝜅(𝑉)
= 1. Since 

the condition number of 𝑉 is fixed and assumed to 

be minimum (= 1), which means that the condition 

number of �̃� is minimum if and only if for all 𝑄 ∈ 𝛷, 

𝑄s are orthonormal.                                                                                                                                                                                                                              

Theorem 2: Let us consider the decomposition of ℝ𝑛
 

as:  

ℝ𝑛 = 𝑉1 ⊕ 𝑉2 ⊕ ⋯ ⊕ 𝑉𝑘                                                                                                    
(3.19)

  

dim(𝑉𝑖) = 𝜌𝑖 , 𝑖 = 1,2,⋯ , 𝑘  and every bases Vi  in the 

decomposition (3.19) to have unit length vectors. 

Then the Condition number of the basis   𝑉 =

[𝑉1|𝑉2|⋯ |𝑉𝑘] is  𝜅(𝑉) =
 𝜎max(𝑉)

𝜎min(𝑉)
, and it is minimized 

if and only if the bases 𝑉𝑖 are orthonormal. 

Proof: The invariance of 𝜅(𝑉) , for the selection of 

different bases has been established. This, together 

with Lemma 2, Corollaries 1 and 2, establish the 

result.                                                                                                                                      

The above establishes 𝜅(𝑉)
 

where{𝑉𝑖} are of 

orthogonal unit length, also as a measure of the 

angle between a set of subspaces, defined as the 

Condition Number of the {𝑉𝑖 , 𝑖 ∈ 𝑘} decomposition. 

3.3 The Spread of Singular Values 

     So far, we have seen two different tools in 

orType equation here.der to measure the degree of 

orthogonality or to measure the skewness of the 

decomposition. 

     Another way to measure the skewness of the 

decomposition is to use so called “the spread of 

singular values of a space”. Note that, by “spread of 

singular values”, we mean the difference between 

the values of singular values of any decomposition.  

What we are interested in, is to show that the spread 

of singular values of decomposition is minimized 

when the space is orthonormal.  

Example 2: Let us consider the direct sum 

decomposition of ℝ𝑛 in terms of subspaces 

𝜰𝒊 and 𝑽𝑖 ∈ ℝ𝑛 , dim(𝜰𝒊) = 𝜌𝑖 ,  𝑖 = 1,2,⋯ , 𝑘,  i.e.  

ℝ𝑛 = 𝑉1 ⊕ 𝑉2 ⊕ ⋯ ⊕ 𝑉𝑘                                                                                                        

(3.20) 

If 𝑉 = [𝑉1|𝑉2|⋯ |𝑉𝑘] is a normal-{𝑉𝑖}𝑘-structured 

bases of ℝ𝑛 and for any
 
𝑉𝑖 = [𝑣1,𝑖 , … , 𝑣𝜌𝑖,𝑖

], then any 

other is expressed as  

http://www.emiratesscholar.com/
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  �̃� = [�̃�1|�̃�2|⋯ |�̃�𝑘] =

[𝑉1|𝑉2|⋯ |𝑉𝑘]

[
 
 
 
 
𝑄1 0 ⋯ 0 0
0 𝑄2 0 ⋮ 0
⋮ 0 ⋱ 0 ⋮
0 ⋯ 0 𝑄𝑘−1 0
0 ⋯ 0 0 𝑄𝑘]

 
 
 
 

= 𝑉. 𝑄 ; 𝑄 ∈

𝛷 

where 𝛷 is defined as the set of all block diagonal 

matrices 𝑄 = diag(𝑄1, … , 𝑄𝑘), such that det(𝑄𝑖) ≠ 0 

and all the columns of 𝑄𝑖  have unit length. Here, we 

want to show that for all the singular values of �̃�, we 

have 𝜎𝑖(�̃�) = 𝜎𝑖(𝑉) = 1,  𝑖 = 1,2,⋯ , 𝑘, if and only if 

  �̃�  are normal-{𝑉𝑖}𝑘-structured bases. 

Proof:  Let 𝑉𝑖 ∈ ℝ𝑛×2, then  𝑉 = [𝑉1|𝑉2],  𝑉𝑖 =

[𝑣1,𝑖 , ⋯ , 𝑣𝜌𝑖,𝑖
], 𝑖 = 1,2.  

Since 𝑉 is a orthonormal bases, then ‖𝑣𝜌𝑖,𝑖
‖ = 1 , 𝑖 =

1,2, and 𝑉 has full column rank and for any 𝜃,  𝑉 =

[
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
]. 

Since 𝑉 has orthogonal columns hence 

𝜎1(�̃�)=𝜎2(𝑉) = 1. Now for any other bases �̃� ∈

ℝ𝑛×2 we have  �̃� = 𝑉𝑄, where |𝑄| ≠ 0  and 𝑄 is a 

square matrix. That is, 𝑄 = [𝑞1 𝑞2] and  

‖𝑞𝑖‖ = 1, 𝑖 = 1,2, but 𝑄 is not necessarily 

orthogonal. Based on these specifications, let’s 

choose 𝑄 as follows:  

𝑄 =  [
휀 𝛿

√1 − 휀2 √1 − 𝛿2
] , 0 ≤ 휀 ≤ 1, 0 ≤ 𝛿 ≤ 1.   

Then from (3.23): 

𝑉 = [
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
] [

휀 𝛿

√1 − 휀2 √1 − 𝛿2
]. 

Now, in order to obtain the singular values of  �̃�, the 

following procedure can be done: 

𝜎2( �̃�) = 𝜎2( 𝑉𝑄) = 𝜆𝑖(𝑄
𝑡𝑉𝑡𝑉𝑄) = 𝜆𝑖(𝑄

𝑡𝑄), 𝑖 =

1,2                                                      (3.21) 

The orthogonality of 𝑉 gives                  𝑉𝑡𝑉 = 𝐼2. 

Then (3.21) becomes: 

𝜎2( �̃�) = 𝜆𝑖(𝑄
𝑡𝑄), 𝑖 = 1,2                                                                                                    

(3.22) 

Now, to obtain the eigenvalues of (𝑄𝑡𝑄), we have: 

𝑄𝑡𝑄 [휀 √1 − 휀2

𝛿 √1 − 𝛿2
] [

휀 𝛿

√1 − 휀2 √1 − 𝛿2
] = [

1 𝑋
𝑋 1

]         

where 𝑋 = 휀𝛿 + √1 − 휀2 √1 − 𝛿2.                                                                                      

(3.23) 

And finally:  det[𝜆𝐼 − 𝑄𝑡𝑄] = 0  gives the eigenvalues 

of 𝑄𝑡𝑄, or in fact the eigenvalues of �̃�. 

|
𝜆 − 1 −𝑋
−𝑋 𝜆 − 1

| = 0 ⇒ (𝜆 − 1)2 − 𝑋2.                                                                              

(3.24) 

From (3.24), the values of the two eigenvalues of  

𝑄𝑡𝑄 will be 𝜆1,2 = {1 − 𝑋, 1 + 𝑋}. 

Obviously, based on (3.22), the singular values of   �̃� 

will be 𝜎1,2 = {√1 − 𝑋, √1 + 𝑋}. 

Since 𝑋 ≥ 0  is always true, then  𝜎1 = √1 − 𝑋 ≥

1  and 𝜎2 = √1 + 𝑋 ≤ 1. 

The inequalities will be changed to equalities if and 

only if 𝑄 is also orthogonal.       

The above example simply shows that for any 

combinations of bases other than the orthonormal 

ones, some of the singular values will be greater than 

1 and some others less than 1. The above result gives 

rise another interesting issue which is strongly 

relative to the above problem. That is, to find the 

value of minimum singular value of any {𝑉𝑖}𝑘-

structured bases chosen from (3.22) as follows; 

Theorem 3:  Let ℝ𝑛 = 𝑉1 ⊕ 𝑉2 ⊕ ⋯ ⊕ 𝑉𝑘   and 

suppose that the columns of 𝑉𝑗 ∈ ℝ𝑛×𝑛𝑖   form an 

orthonormal basis of 𝑉𝑖 , 𝑖 = 1,2, … , 𝑘  so that  𝑛 =

∑ 𝑛𝑗
𝑘
𝑗=1  and hence: 𝑉 = [𝑉1|𝑉2|⋯ |𝑉𝑘] is a square 

invertible matrix. Then 𝜎𝑚𝑖𝑛(𝑉) ≤ 1. Furthermore, 

this is an equality if and only if  

𝑉𝑖 ⊥ 𝑉𝑗𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑗, so that 𝑉 is an orthogonal 

matrix. 

Proof:  Assume that the singular values of 𝑉 are 

introduced as 𝜎1 ≥  𝜎2 ≥ ⋯ 𝜎𝑛 > 0  (Since V is 

http://www.emiratesscholar.com/
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square, invertible matrix, then all the singular values 

are positive). A direct evaluation gives: 

𝑉𝑡𝑉 =

[
 
 
 
𝑉1

𝑡

𝑉2
𝑡

⋮
𝑉𝑘

𝑡]
 
 
 

[𝑉1 𝑉2 ⋯ 𝑉𝑘]

=

[
 
 
 
 

𝐼𝑛1
𝑉1

𝑡𝑉2 ⋯ 𝑉1
𝑡𝑉𝑘

𝑉2
𝑡𝑉1 𝐼𝑛2

⋯ 𝑉2
𝑡𝑉𝑘

⋮ ⋮ ⋮ ⋮
𝑉𝑘

𝑡𝑉1 𝑉𝑘
𝑡𝑉2 ⋯ 𝐼𝑛𝑘 ]

 
 
 
 

 

and hence:   𝑡𝑟𝑎𝑐𝑒(𝑉𝑡𝑉) = ∑𝜆𝑖(𝑉
𝑡𝑉)

𝑛

𝑖=1

= ∑𝜎𝑖
2(𝑉)

𝑛

𝑖=1

= ∑ 𝑛𝑗

𝑘

𝑗=1

= 𝑛. 

Thus,    𝑛𝜎𝑛
2(𝑉) ≤ ∑ 𝜎𝑖

2(𝑉) = 𝑛  ⇒

𝑛

𝑖=1

 𝜎𝑛(𝑉) ≤ 1. 

Next let  𝜎𝑛(𝑉) = 1. Then we have that 𝑛𝜎𝑛
2(𝑉) = 𝑛, 

and hence  𝑛𝜎𝑛
2(𝑉) = ∑ 𝜎𝑖

2(𝑉)𝑛
𝑖=1 , so that 𝜎1(𝑉) =

𝜎2(𝑉) = ⋯ 𝜎𝑛(𝑉) = 1. This immediately implies 

that 𝑉 is orthogonal .Conversely if 𝑉 is orthogonal 

then all the singular values of 𝑉 (including 𝜎𝑛(𝑉)) are 

equal to 1.                                                                                                                                                                                                                                           

Corollary 3:  Let 𝑉 = [𝑉1|𝑉2|⋯ |𝑉𝑘] with 𝑉𝑗 ∈ ℝ𝑛×𝑛𝑖 

and = ∑ 𝑛𝑗
𝑘
𝑗=1 , be a non-singular matrix with all 

columns of  𝑉𝑗 normalized to 1, (𝑗 = 1,2, … , 𝑘). Then 

 𝜎𝑚𝑖𝑛(𝑉) ≤ 1; furthermore  𝜎𝑛(𝑉) = 1 if and only if 

𝑉 is orthogonal. 

Proof:  Consider that 𝑉 contains 𝑛-one dimensional 

subspaces as follows: 

𝑉 =

{
𝑐𝑜𝑙1(𝑉1)  …    𝑐𝑜𝑙𝑛1

(𝑉1)     𝑐𝑜𝑙1(𝑉2)  …    𝑐𝑜𝑙𝑛2
(𝑉2)     

…    𝑐𝑜𝑙𝑛𝑘
(𝑉𝑘) 

}, 

then theorem 3 applies and hence  𝜎𝑚𝑖𝑛(𝑉) ≤ 1. 

Furthermore,  𝜎𝑛(𝑉) = 1 if and only if 𝑉 is 

orthogonal.           

4. Conclusion 

     The problem of the skewness of the eigenframes 

in a direct sum decomposition, has been investigated 

using two different kind of measurement tools; 

Condition number and Gramian determinant, and it 

has been proved that for a fixed angle between 

subspaces of a direct sum decomposition, the 

optimum values of both condition number and 

Gramian determinant of the whole space are 

obtained if and only if any individual subspace 

contains orthonormal vectors. It also has been 

shown that within this situation, the spread of the 

singular values of the whole space is minimized. 
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